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ABSTRACT 
SCOTT EDMUND KELSEY BENNETT: Transtensional Rifting in the Late Proto-Gulf of 

California Near Bahía Kino, Sonora, México 
(Under the direction of Michael Oskin) 

 

 The Gulf of California provides an active rift example to test the role of rift obliquity 

in continental rupture. Continental rifts require focused strain to rupture and form an ocean 

basin. Strike-slip faults are ubiquitous in oblique rifts and focused transtensional strain 

adjacent to these faults may be a catalyst for rupture. To test this hypothesis, I completed 

structural mapping, fault-kinematic analysis, geochronology, basin analysis, and 

paleomagnetism of pre- and syn-rift rocks exposed in coastal Sonora, México. Sedimentary 

basins record ~16 km of west-northwest-directed transtension across the Kino-Chueca Shear 

Zone. Onset of transtension in the study area is estimated to be ca. 7 Ma and lasted for 

approximately 1 million years. This represents a significant portion (~28%) of plate 

boundary deformation over this time interval. Dextral shear was progressively localized 

within this zone of extensional deformation, and together shear and extension acted to focus 

lithospheric-scale strain into a narrower zone. 
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INTRODUCTION AND MOTIVATION 

 Continental rifting and formation of ocean basins has been a fundamental component 

of plate tectonics for the majority of Earth history. Because continental crust is typically 

thick (30 - 60 km) and tends to stretch rather than break, (McKenzie, 1978; Lavier and 

Manatschal, 2006) strain localization must somehow occur in order to rupture a continent and 

form a new ocean basin. Generally, continental rifting has been classified into three modes: 

narrow-rift, wide-rift, and core-complex (Buck, 1991). The mode of a rift is dependent upon 

whether deformation remains fixed and upon the effectiveness of lower crustal flow. ‘Narrow 

rift’ mode occurs where extension is focused in both the crust and mantle lithosphere and is 

favored in thick, cold, and relatively strong lithosphere. ‘Wide rift’ mode exhibits distributed 

stretching over typically thinner, warmer, and thus somewhat weaker lithosphere. ‘Core-

complex’ mode is a bi-modal mode of strain with focused upper crustal extension and widely 

distributed lower crustal thinning. This mode occurs in hot, weak, low-viscosity lithosphere. 

Continental rifts likely evolve from one mode to another during their extensional history. 

Ultimately, formation of a narrow rift and continental rupture require strain to be localized 

across the lithospheric column (Buck, 1991; Lavier and Manatschal, 2006). 

 Multiple parameters have been called upon to control the mode of rifting. Numerical 

models show that initial thermal state and crustal thickness (Buck, 1991), presence of lower 

crustal flow (Buck, 1991; Hopper and Buck, 1996; Buck et al., 1999; Al-Zoubi and ten 

Brink, 2002), buoyancy contrasts (Lavier et al., 1999; Buck, 1991; Forsyth, 1992; Buck et al., 

1999), strain rate (England, 1983; Kusznir and Park, 1987; Bassi, 1995; Huismans and 

Beaumont, 2003), and intensity of rift magmatism (Buck et al., 1999; Kusznir and Park, 

1987; Hopper and Buck, 1996) can each be a controlling factor in the rift style and may 



 

influence the rupture potential of a rift. Many of these parameters are intricately linked to one 

another; for example, a low strain rate that produces slow exhumation allows for conductive 

cooling of the lithosphere, which permits it to maintain strength. These linked processes 

create both negative and positive feedbacks on the ability for lithospheric-scale strain to 

become localized and allow a rift to proceed to rupture. 

LOCALIZED EXTENSIONAL STRAIN 

 A narrow rift forms either under favorable initial conditions or by positive feedbacks 

on the ability of a wide rift to evolve into a narrow rift. Initial conditions favorable for 

formation of a narrow rift are initially cold and thick lithosphere. Rifting in such strong 

lithosphere tends to remain focused into a zone of necking (Artemjev and Artyushkov, 1971; 

Buck, 1991; Hopper and Buck, 1996), where one or more of the parameters introduced above 

work to overcome thermal diffusion and sufficiently concentrate lithospheric strain. If these 

initial conditions are not met, typically a wide rift will initially form. A transition must occur, 

where a necking instability develops, allowing a wide rift to evolve into a narrow rift that 

proceeds to continental rupture. For example, formation of a trans-lithospheric fault, in the 

form of a detachment fault or ductile shear zone (e.g. Louden and Chian, 1999), where strain 

can localize, may lead to rupture (Lavier and Manatschal, 2006). 

 Strain rate and magnitude both control the ability of the crust to conductively cool. 

Fast strain rates and large strains promote shear heating of the lithosphere (Kaus and 

Podladchikov, 2006). Shear heating and the advection of heat due to uplift of warm material 

towards the surface will increase the geothermal gradient in extensional regions. In response, 

the rate of cooling will also increase. However, the resultant temperature of the lithosphere 

will increase in the presence of shear heating and it will locally weaken the lithosphere 
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because of the insufficient time for it to cool and strengthen. This ‘strain softening’ leads to a 

concentration of deformation in a narrow zone, which in turn allows an increased strain rate 

(England, 1983). This positive feedback between increased strain rate and lithospheric 

weakening allows for large amounts of localized thinning and a high potential for crustal 

rupture (Kusznir and Park, 1987; Huismans and Beaumont, 2003). Results from Buck (1991, 

his Fig. 11) suggested that as strain rate is increased, rift style may switch from wide rift to 

narrow rift for 40 km-thick crust and from core-complex to narrow rift for 60 km-thick crust. 

Buck (1991) also argued that as the crust is thinned for a constant heat flow, rift style 

generally evolves from core complex to narrow rift, with wide rift as an occasional 

intermediate step. Therefore, by moderating the ability of the crust to conductively cool, 

strain rate may control the style of rifting. In short, extended regions with lower strain rates 

will form wide rifts, and areas with higher strain rates will form narrow rifts with higher 

rupture potential.  

 The presence of magmatism in the form of diking also controls the rupture potential 

of a rift (Buck et al., 1999). In a magmatic rift, diking adds heat that can weaken the 

lithosphere. Dikes also reduce the tectonic force required for crustal extension. When the 

fluid pressure of magma beneath a rift exceeds the resisting forces that act to keep cracks 

closed, diking can occur. Therefore, where magmatic diking is present, it assists extension 

insomuch that less extensional force is required to stretch the lithosphere. Consequently, 

extension in the presence of magmatic diking has a higher potential for focused deformation, 

lithospheric necking, and eventual lithospheric rupture. Ultimately, a rift that proceeds to 

rupture requires magmatic intrusion via diking of mafic magma. Thus, magmatism may not 

only control rift style, but helps to define when a rift has ruptured. 
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 In contrast to these localizing parameters, other parameters create negative feedbacks 

on the ability of a wide rift to transition into a narrow rift and further promote the distribution 

of strain and rift widening. In extended regions, lateral variations in lithospheric thickness 

develop as a result of extensional faulting. These thickness variations cause differential 

vertical body forces, where greater vertical stresses are predicted for thicker areas and 

smaller stresses are predicted for areas thinned via extension (Buck, 1991). These stress 

differences produce horizontal stress gradients. For a rift axis flanked by thicker rift margins, 

these stress gradients will be towards areas of relatively thinner lithosphere, and act to 

constrict regions of active extension. Thinner regions are thus inhibited from further 

extension, and extensional strain is distributed elsewhere, which promotes rift widening. In 

the absence of lateral crustal density heterogeneities, these differential stresses also cause 

lateral pressure variations whose gradients may drive lower crustal flow of weaker or 

relatively warmer crust (Buck, 1991). Typically, lower crust will flow from areas of 

relatively thick crust into areas of thinned crust, preventing further localized extension in 

thinned areas, and effectively widening the rift (Buck, 1991; Buck et al., 1999; Bialas et al., 

2007). Evidence for the inflow of ductile lower crust has been observed along multiple rifted 

passive margins such as the Exmouth Plateau of northwest Australia (Driscoll and Karner, 

1998) and both the Iberia-Newfoundland and Galicia-Newfoundland margins of the northern 

Atlantic (Louden and Chian, 1999), in regions of highly-extended continental crust and core-

complex formation of the Basin and Range of western North America (Block and Royden, 

1990), and has been proposed for the early stages of rupture in the northern Gulf of 

California (González-Fernández et al., 2005). 

 Flexural forces within a rift also act to promote wide rifts. Crustal thinning occurs as 

extensional faults slip, with thinnest crust found adjacent to the fault trace. The resulting 
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differential buoyancy forces cause isostatic rebound of thinned areas. Empirical evidence for 

isostatic rebound of thinned continental crust substantiates this process (Coleman and 

Walker, 1994). Forsyth (1992) argued that this uplift creates flexural forces on the normal 

fault surface, such that continued slip on the normal fault is inhibited. When the initiation of 

a new normal fault better optimizes the use of regional stresses than continued slip on an 

existing fault, extensional strain migrates elsewhere, forming a wider rift. 

 A factor not considered by current models is the three-dimensional rift geometry. In 

particular, current two-dimensional models fail to evaluate the role of rift obliquity. (e.g. 

Buck, 1991; Lavier et al., 1999; Lavier and Manatschal, 2006). Rift obliquity is a common 

feature of some active rifts such as the Gulf of California (Umhoefer and Stone, 1996) and 

the Gulf of Aden (Withjack and Jamison, 1986) and of ancient rifts as seen in the Triassic 

Harford basin of eastern North America (deBoer and Clifton, 1988). A fundamental 

distinction between oblique rifts and orthogonal rifts is the occurrence of significant shear 

accommodated along steep strike-slip faults. Orthogonal continental extension tends to be 

distributed because of crustal thickness variations (Buck, 1991) and flexural forces on normal 

faults (Forsyth, 1992). Because a strike-slip fault does not by itself build topography, 

buoyancy forces do not hinder its total displacement and strain rate. Where extension is 

hosted within a strike-slip-dominated setting, very large extensional strains may result (e.g. 

Walker Lane, Unruh et al., 2003) and higher extensional strain rates are locally observed 

(e.g. Dead Sea rift, Al-Zoubi and ten Brink, 2002). Elevated strain and strain rates that occur 

in transtensional regions may ultimately influence the rupture potential of a rift.  
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THE GULF OF CALIFORNIA 

 The Gulf of California is a youthful marine basin well suited to study the processes of 

continental rupture. The Gulf of California is located between the Baja California peninsula 

and mainland Mexico, two landmasses of continental crust (Gastil et al., 1975, Gastil and 

Krummenacher, 1977a,b) that have been rifted apart (Fig. 1). Furthermore, this rift possesses 

temporal and along strike variations of rift maturity (Atwater, 1989), volcanic activity 

(Hausback, 1984), and extensional style (Lizarralde et al., 2007) that allow for comparative 

studies. 

 The Gulf of California rift, in the largest sense, is an active releasing bend along the 

Pacific-North America (PAC-NAM) plate boundary, immediately south of the restraining 

bend of the San Andreas fault system of southern California (Fig. 1). This releasing bend 

geometry causes a low angle of obliquity (0 - 30°) between the trend of the rift and the PAC-

NAM relative displacement direction. For this magnitude of rift obliquity, analytical and 

experimental models predict combinations of NW-trending dextral strike-slip, NE-trending 

sinistral strike-slip, north-trending dip-slip, and variously oriented oblique-slip structures 

(Withjack and Jamison, 1986). Field studies in the Gulf of California (e.g. Fenby and Gastil, 

1991; Lonsdale, 1989) have identified significant rift structures in the Gulf of California that 

corroborate these model predictions (Fig. 1). Together, these structures accommodate oblique 

PAC-NAM relative motion. 

Proto-Gulf of California Tectonic Evolution 

 Prior to ~16 Ma, the southwestern edge of the North American plate along 

northwestern Mexico was a subduction boundary (Fig. 2A; Atwater, 1970). By ~12.5 Ma, the 

Rivera Triple Junction jumped southeastward, setting the stage for transfer of the Baja  
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California peninsula from the North American plate to the Pacific plate, and initiating the 

Gulf of California rift. Traditionally, the history of the Gulf of California rift has been 

divided into two stages: an early proto-Gulf stage spanning from ~12.5 - 6 Ma, and a later 

modern-Gulf stage spanning from ~6 Ma to present.  

 Throughout the earlier proto-Gulf period, strain was distributed in an uncertain way 

between the dextral San Benito and Tosco-Abreojos faults located west of the Baja 

California peninsula and the Gulf Extensional Province (GEP) of interior Mexico (Fig. 1, 

2B,C; Spencer and Normark, 1979; Stock and Hodges, 1989). The uncertainty surrounding 

proto-Gulf strain distribution hinders understanding of continental rupture processes from 

tectonic reconstructions of the Gulf of California. Observations of cumulative modern-Gulf 

(post-6 Ma) offsets of geologic features in the Gulf of California (Oskin et al., 2001; Oskin 

and Stock, 2003a) corroborate expected PAC-NAM relative motions determined from the 

global plate circuit (Atwater and Stock, 1998). However, similar observations during proto-

Gulf time do not account for ~300 km of dextral PAC-NAM motion (Fig. 3; Stock, 2007; 

Stock and Hodges, 1989; Stock and Molnar, 1988). Candidate locations for this missing 

proto-Gulf slip include west of the Baja California peninsula (e.g. the San Benito and Tosco-

Abreojos faults) and the region between the Sonora coastline and the western edge of the 

Sierra Madre Occidental of central Mexico (Fig. 1). Attempts to account for this proto-Gulf 

shear has led to two disparate end-member models: (1) partitioned deformation with 

significant dextral strike-slip west of Baja California along the San Benito and Tosco-

Abreojos fault systems and WSW-extension within the GEP (Fig. 2B, Stock & Hodges, 

1989), and (2) distributed shear and extension within the GEP, broadly similar to but less 

localized than the modern plate boundary (Fig. 2C, Gans, 1997; Fletcher et al., 2007). These  
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Figure 3.   (A) Global plate circuit reconstructions (Atwater and Stock, 1998; Royer et al., 2006) have accurately determined 
that the PAC-NAM relative plate motion caused the Pacific plate to be displaced 634 km along azimuth 317˚ since 11 Ma (blue 
arrow; figure modified from Stock, 2007).  (B) Modern-Gulf displacement across the Upper Delfin basin (green arrow; Oskin et 
al., 2001) is constrained to 300 km along azimuth 320˚. The remaining proto-Gulf displacement is unaccounted for and can be 
decomposed further into displacement distributed in an unknown way between the Tosco-Abreojos fault west of Baja California 
(black arrow) and the coastal Sonora region within the Gulf Extensional Province (red arrow). These three plate vector 
diagrams demonstrate that proto-Gulf shear in coastal Sonora is approximately inversely proportional to proto-Gulf shear along 
the Tosco-Abreojos fault. Greater amounts of proto-Gulf shear in coastal Sonora requires less shear along the Tosco-Abreojos 
fault. Scenarios of 100-300 km of displacement along the Tosco-Abreojos fault are allowable with variable amounts of proto-
Gulf displacement in Sonora. See Figure 1 for geologic and geographic context of faults and regions described here. TAF - 
Tosco-Abreojos fault, PAC - Pacific plate, NAM - North America plate, BC - Baja California vector, S - Sonora vector
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two end-member models will be referred to as ‘strain partitioning’ and ‘distributed 

transtension’ respectively. 

 One alternative to these end-member models would be a hybrid ‘progressive 

localization’ model. In this model, the proto-Gulf period commences (ca. 12.5 Ma) with 

deformation partitioned into a shear component west of the Baja California peninsula and an 

extensional component within the GEP, following the ‘strain partitioning’ model. With time, 

proto-Gulf strain incrementally transitions towards a more distributed pattern of non-

localized transtension within the GEP as the shear component west of Baja California 

gradually becomes less significant, following the ‘distributed transtension’ model. By the end 

of the proto-Gulf period (~6 Ma), shear deformation progressively becomes more localized 

along focused dextral shear zones within the GEP that remain embedded within a broader 

extensional region.  

 Observations from both sides of the northern Gulf of California lend support to the 

notion that coastal Sonora may have hosted a component of proto-Gulf shear. Gans (1997) 

provided the first alternative to the ‘strain partitioning’ model, with observations that large-

magnitude extensions in Sonora may entirely pre-date 12 Ma and are not rift related. Based 

upon observations of distributed dextral faulting that post-dates this extension, he further 

suggested that the Gulf of California opened via northwest-directed transtension throughout 

both proto-Gulf and modern-Gulf time. Observations of 12 - 9 Ma dextral motion in coastal 

Sonora near Guaymas have been reported as evidence for a gradual proto-Gulf organization 

of the rift system within the GEP (Herman and Gans, 2006; Gans et al., 2006). Fletcher et al., 

(2007) examined offset submarine fan deposits that are truncated by the Tosco-Abreojos fault 

west of Baja California, and determined that total post-13 Ma offset along the Tosco-

Abreojos fault was <150 km, much less than earlier predictions of as much as 300 km. These 
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data led to the prediction that the ~150 km of missing strike-slip faulting is required to be 

within the GEP (Fig. 1). Using relative plate motion vector constraints from northeastern 

Baja California, Nagy and Stock (2000) suggested that transform faults west of Baja 

California may have accommodated smaller amounts of slip during proto-Gulf time as the 

plate boundary gradually migrated eastward into the GEP. Altogether, these observations 

begin to suggest that the extreme end-member version of the ‘strain partitioning’ model of 

Stock and Hodges (1989) may not accurately represent the distribution of proto-Gulf strain 

and deformation. Alternatively, these data suggest that either the ‘distributed transtension’ or 

‘progressive localization’ model may more accurately reflect the composition of proto-Gulf 

tectonics. 

Rift Localization and the Modern-Gulf of California 

 In contrast to the proto-Gulf period, there is general consensus about the evolution of 

the modern-Gulf of California. Shortly after 6.1 Ma, transfer of the Baja California peninsula 

to the Pacific plate was largely complete with the plate boundary focused into the modern-

day Gulf of California (Oskin et al., 2001; Oskin and Stock, 2003a). Additionally, the 6.5 - 

6.3 Ma marine incursion into the northern Gulf of California is coincident with this onset of 

focused PAC-NAM plate motion, which likely helped to create a continuous axis of crustal 

thinning that facilitated the incursion of marine waters (Oskin and Stock, 2003c). Following 

~6 Ma, the active rift axis was focused in extensional basins found today in the eastern 

marine basins of the Gulf of California. The rift axis migrated westward ca. 3.3 - 2.0 Ma, 

abandoning this N-S string of eastern extensional basins, and has since been focused along 

the western edge of the Gulf of California (Aragón-Arreola and Martín-Barajas, 2007). 

During modern-Gulf time, the PAC-NAM plate boundary was, and remains, a largely 
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focused oblique plate boundary of short extensional basins connecting right-stepping dextral 

fault systems (Fig. 2D). 

TESTING THE RIFT OBLIQUITY HYPOTHESIS 

 Because the oblique Gulf of California rift is dominated by major dextral strike-slip 

faults, it is important to examine the role of these structures in strain localization. If localized 

extension was favored in areas of strike-slip faulting, then the onset of dextral shear in the 

Gulf of California may have set the stage for subsequent continental rupture ca. 6 Ma. I 

hypothesize that the well-documented rupture of the Gulf of California at ca. 6 Ma was 

coincident with or closely preceded by earliest dextral faulting within the Gulf Extensional 

Province. These dextral faults acted to enhance extensional strain rates, concentrate 

lithospheric strain, and focus a broad extensional plate boundary into a narrow zone of 

focused rifting. Ultimately, this focused lithospheric strain was the catalyst for formation of 

trans-lithospheric faults and rupture of continental lithosphere in the Gulf of California. 

 To test the role of obliquity and its ability to facilitate focused rifting, timing 

constraints for the onset of transtensional tectonics must be obtained. Determining this timing 

will aid in testing whether earliest dextral shear within the GEP coincided with either (1) 

continental rupture at the beginning of the modern-Gulf stage (strain partitioning), or (2) 

prior to rupture during the proto-Gulf stage (distributed transtension). If the onset of 

transtension coincided closely with the onset of continental rupture in the Gulf of California, 

this lends support to the hypothesis that the obliquity of a rift and the resultant enhanced 

strain rate plays a key role in the rupture potential of a continent.  

 To evaluate the magnitude of proto-Gulf dextral shear in coastal Sonora and therefore 

test the role of obliquity in continental rifting, a study area was selected along the eastern 

13



 

margin of the Gulf of California (Fig. 4, Plate 1). Here, dextral faults (e.g. Sacrificio fault) 

are recognized onshore (Gastil and Krummenacher, 1977a,b; Oskin and Stock, 2003a) that 

may be directly linked to the transform faults offshore (e.g. De Mar fault, Fig. 4; Aragón-

Arreola and Martín-Barajas, 2007) that accommodated oblique Gulf opening. In addition to 

its proximity to the modern rift axis, the study area is also host to both pre-rift and syn-rift 

volcanic and sedimentary rocks (Gastil and Krummenacher, 1977a; Oskin and Stock, 

2003a,b) that could likely record a continuous and detailed rift history. 

 This study utilizes detailed structural field mapping, fault kinematic analysis, 

paleomagnetic analysis, stratigraphic analysis, and geochronology in an investigation of these 

deformed pre-rift and syn-rift rocks to construct a detailed geologic history for coastal 

Sonora from Miocene time to the present. Based upon detailed structural field mapping, I 

construct a stratigraphic and structural context for pre-rift and syn-rift volcanic and 

sedimentary deposits. Fault kinematic analysis provides a quantitative representation of 

paleo-stress fields. Paleomagnetic analysis of pre-rift and syn-rift isotopically-dated volcanic 

rocks quantifies the amount of vertical-axis rotation that is associated with dextral shear and 

provides timing constraints for these rotations. Stratigraphic analysis of sedimentary rocks 

builds a framework for depositional environments and their tectonic significance. 

Geochronology of these pre-rift and syn-rift volcanic rocks provide chronologic constraints 

for earliest basin formation related to rift-related tectonics. Altogether, this study aims to 

better understand the role of obliquity in continental rifting, while testing the hypothesis that 

the rupture of the Gulf of California at ca. 6 Ma was coincident with or closely preceded by 

earliest dextral faulting within the Gulf Extensional Province.  
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PREVIOUS WORK 

Pacific-North America Plate Boundary 

 Wegener (1924) applied continental drift concepts to explain the Gulf of California 

when he suggested that the Baja California peninsula had been dragged to the south, away 

from mainland Mexico. He also correctly suggested a northward sliding of the peninsula, or 

lag relative to the Mexican mainland, which was presumably sliding southward at a faster 

rate. The PAC-NAM plate boundary in the Gulf of California was first accurately recognized 

as a transtensional pull-apart feature by Hamilton (1961) who suggested that the Baja 

California peninsula had been translated ~150 miles towards the northwest with ~100 miles 

of separation (extension) along faults related to the San Andreas fault system. Larson et al. 

(1968) confirmed this idea with magnetic anomaly transects at the mouth of the Gulf 

demonstrating that the southernmost tip of the peninsula was torn from the mainland of 

Mexico by 4 Ma. Spencer and Normark (1979) discovered the Tosco-Abreojos fault zone 

west of Baja California, and attributed it as a major component of the PAC-NAM plate 

boundary from 12 - 4 Ma. Stock and Hodges (1989) first proposed the ‘strain partitioning’ 

model with examination of the timing and direction of extensional structures during proto-

Gulf time, along with direction and amount of PAC-NAM plate motion throughout Miocene 

time. Oskin et al. (2001) reinforced this concept with correlation of 12.5 - 6.1 Ma volcanic 

stratigraphy located within the GEP that are offset by the same amount across the GEP. In 

contrast, Gans (1997) proposed the unimodal ‘distributed transtension’ concept through 

observations of 27 - 12 Ma extensional structures in the GEP that are cut by proto-Gulf 

dextral faults.  
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Coastal Sonora 

 McGee and Johnson (1896) accurately summarized the geology of the coastal 

Sonoran region when they wrote, “…the intermontane expanses are simply planed rock strata 

with a scant veneer of torrent-spread alluvium.” They also reported evidence for a recent 

high sea level stand to explain marine shells found in the southeastern corner of the study 

area, where closed depressions slightly below sea level are common. Of course, not all 

marine shells in the region are evidence for recent high sea level stands. Throughout the 

study area, sun-bleached marine shells can be found intercalated in modern drainages and on 

bedrock hillslopes multiple kilometers inland at elevations exceeding 100 m. These marine 

shells are likely the littered remains of meals eaten historically by members of the native 

Comcáac tribe who have inhabited the coastal Sonora region for centuries, rather than 

evidence of a recent sea level high. 

 After visiting the Bahía Kunkaak area, Beal (1948) published a 1:1,000,000 

reconnaissance geologic map of the Gulf of California and the Baja California peninsula that 

illustrated some major rift-related structures west of Isla Tiburón. However, no structures 

near the study area are depicted and the entire study area is mapped as crystalline or 

metamorphic basement. During a 1940 Scripps Cruise into the Gulf of California, Anderson 

(1950) made fundamental observations about the nonconformable contact and age 

relationships between Late Cretaceous basement rocks and the overlying Tertiary rocks near 

Guaymas. These relationships hold true in the study area and throughout much of the 

northern Gulf of California region. Gastil and Krummenacher produced a 1:150,000-scale 

regional geologic map (1977a) and reconnaissance report with geochronologic results 

(1977b) of the deformed rocks in the study area. Oskin (2002) improved on the resolution of 

the study area with a 1:50,000-scale map (his Plate 1) based on interpretations of Landsat 
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imagery and reconnaissance mapping of Late Miocene ignimbrite deposits. Regional 

geochronologic, geochemical, and isotopic studies of the coastal Sonora batholith (Ramos-

Velázquez et al., 2008; Valencia-Moreno et al., 2001; Valencia-Moreno et al., 2003) dated 

and documented a variety of igneous rocks in coastal Sonora. Paleomagnetic studies by 

Oskin et al. (2001) and Herman and Gans (2006) identified clockwise vertical-axis rotation 

of rocks exposed along the Sonoran coastline that could have occurred during the proto-Gulf 

time period. 

GEOLOGIC MAPPING IN COASTAL SONORA 

 Detailed geologic mapping (Plate 1) was conducted on a variety of base maps at a 

variety of scales (Plate 1 inset). Mapping in coastal Sonora during Winter 2006/2007 was 

completed on the ‘Bahía Kino’, ‘Bahía Kunkaak’, and ‘Punta Chueca’ 1:50,000-scale 1/3-

degree (longitude) by 1/4-degree (latitude) Instituto Nacional de Estadística y Geografía 

(INEGI) topographic base maps enlarged to 1:12,000-scale. Mapping in Sonora during 

Winter 2007/2008 was completed on 1:10,000-scale, Quickbird satellite imagery with 

topographic contours derived from the 90-m Shuttle Radar Topography Mission (SRTM) 

digital elevation model (DEM). Quickbird imagery included three multispectral bands at 2.4 

m resolution and one panchromatic band at 0.6 m resolution. The multispectral bands were 

pan-sharpened to generate a 0.6 m resolution false-color base map. This integrated imagery 

dataset enhanced the different wavelengths of light reflected from rocks of variable iron 

composition and assisted with locating structures and geologic contacts between lithologic 

units (Hook et al., 1998). The imagery dataset was exploited both in the field while mapping 

on paper maps, and in the office when completing areas not mapped on foot. Mapping in 

central Baja California in May 2008 was conducted on the ‘El Metate’ and ‘Matomi’ 
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1:50,000-scale INEGI topographic base maps at both 1:50,000-scale and on enlarged 

1:20,000-scale base maps. 

STRATIGRAPHY AND GEOCHRONOLOGY 

Stratigraphic and Geographic Context 

 A regional stratigraphic framework for the northern Gulf of California (Oskin and 

Stock, 2003b) divides the stratigraphy into four groups overlying basement rocks. For the 

sake of continuity and clarity, this study adopts and applies this framework to the local 

stratigraphy mapped in coastal Sonora (Fig. 5).  

 Within the study area, basement rocks and stratigraphic groups one and two consist of 

lithologic units present prior to rifting in the Gulf of California. Basement rocks include both 

the Late-Cretaceous coastal Sonora batholith (Ramos-Velázquez et al., 2008) and their 

Paleozoic metamorphic host rocks (Gastil and Krummenacher, 1977a,b). Group one includes 

Oligo-Miocene fluvial sedimentary rocks that lay nonconformably on basement. Group two 

consists mostly of andesitic and basaltic flows and pyroclastic deposits emplaced in 

association with a subduction-related arc (Hausback, 1984, Oskin and Stock, 2003b). Group 

two also includes the 12.5 Ma Tuff of San Felipe, a regional ignimbrite than spans both 

margins of the Gulf of California rift (Stock et al., 1999; Oskin et al, 2001). Group three 

consists of interfingering basalt and rhyolite flows, non-marine sedimentary deposits, and 

pyroclastic rocks, culminating with the 6.4 Ma Tuffs of Mesa Cuadrada, and were deposited 

broadly during proto-Gulf time. Group four consists of additional non-marine sedimentary 

deposits, occasional interbedded pyroclastic ash deposits, all of which were deposited during 

latest proto-Gulf time. Alluvial and coastal deposits are late Quaternary in age. Published  
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Figure 5.   Generalized stratigraphic and chronologic relationships of mapped pre-Quaternary geologic units from the coastal 
Sonora study area. Bold black lines separate the four chronologic groups, following Oskin and Stock (2003b). See text and 
geologic map (Plate 1) for detailed unit names, unit descriptions, and published geochronology. Published isotopic ages (Table 
1) from individual units within the study area are shown.

Tat = 62.5 ± 1.5 Ma
(Ramos-Velázquez et al. 2008)

Tbpc = 11.47 ± 0.05 Ma
(Oskin et al., 2003)

Ttmc = 6.39 ± 0.02 Ma
(Bennett et al., 2007)

Ttct = 6.53 ± 0.18 Ma
(Dorsey et al., 2008)

Ttsf = 12.50 ± 0.08 Ma
(Bennett et al., 2007)

Tbp(?) = 17.8 ± 0.8 Ma
(Gastil & Krummenacher, 1977b)

Taun = 21.0 ± 0.8 Ma
(Gastil & Krummenacher, 1977b)

Kt = 84.1 ± 1.0 Ma
(Ramos-Velázquez et al. 2008) 

Kmd = 85.1 ± 1.7 Ma
(Gastil & Krummenacher, 1977b)

Kgr = 74.0 ± 0.7 Ma
(Ramos-Velázquez et al. 2008)
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geochronologic results from samples collected within the study area are summarized in Table 

1 and labeled in Figure 5. 

 The study area is divided into fault blocks that are defined by rift-related structures 

that will be discussed later. These structures created and later deformed tectonic basins (Fig. 

6). These fault blocks and tectonic basins are frequently referred to for both geologic and 

geographic context. 

Basement 

Pre-Eocene Basement Rocks 

 Pre-Eocene basement rocks consist of probable Paleozoic-age metamorphic rocks 

(Gastil, 1993) that are intruded by Late Cretaceous tonalite, granite, both mafic and felsic 

dikes, and Early Paleocene shallow intrusions (Plate 1; Ramos-Velázquez et al., 2008). 

 Paleozoic-age map units group meta-sedimentary (Pzms), meta-carbonate (Pzcb) and 

meta-igneous (Pzig) rocks. Pzms consists of gray to black quartzite and slate. Pzig consists of 

meta-basalt or meta-gabbro with multiple crosscutting felsic dikes. Pzcb consists of meta-

limestones and meta-carbonate-cemented sandstones that form 0.5 - 5 cm-thick alternating 

bands of gray, white, and orangish-red. 

 Basement rocks in much of the southern, central, and western portions of the study 

area are comprised of a tonalite (Kt) containing plagioclase (long axis up to 0.5 cm) ≈ 

hornblende (long axis up to 1.0 cm) ≈ quartz (locally up to 1.0 cm in diameter) > biotite. 

Ramos-Velázquez et al. (2008) reported an U/Pb zircon age of 84.1 ± 1.0 Ma for their ‘Kino 

Granodiorite’ where Kt is exposed in the Cerro Kino block. Here, multiple sub-vertical 

hornblende-rich mafic dikes (Kmd), up to 35 m-thick, intrude the tonalite, and have coarser  
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porphyritic to pegmatitic edges and finer phaneritic to porphyritic cores. Gastil & 

Krummenacher (1977b) reported a K-Ar age of 85.1 ± 1.7 Ma from these mafic dikes.  

 Basement rocks in much of the eastern and northern portions of the study area are 

comprised of a granite (Kgr) with abundant alkali-feldspar megacrysts up to 2 cm in length > 

quartz >> plagioclase-feldspar ≈ biotite ≈ amphibole. Multiple intrusive contacts demonstrate 

that Kgr is younger than Kt and all Paleozoic units (e.g. baked contacts, Kgr dikes cutting all 

other basement rocks). Locally, modern-Gulf faults have preferentially localized along these 

intrusive contacts as pre-existing planes of weakness (e.g. Eco and Puerto Rico blocks, Plate 

1). Ramos-Velázquez et al. (2008) reported a U/Pb zircon age of 74.0 ± 0.7 Ma for their 

‘Rancho Nuevo Granite” in the Granito block where Kgr is observed. Ramos-Velázquez et 

al. (2008) also reported an U/Pb zircon age of 90.1 ± 1.1 Ma for their ‘Kino Granodiorite’ in 

the Puerto Rico block where the alkali-feldspar megacryst granite (Kgr) is mapped. This age 

is at least 6.0 Myr older than all other dated ‘Kino Granodiorite’ samples in coastal Sonora 

and does not appear to be a granodiorite. This sample may have been collected from an older 

episode of granitic pluton emplacement that may pre-date both Kgr and Kt, not yet 

differentiated by existing mapping. 

 Felsic dikes (Kfd) appear to cut all basement rocks. Kfd is mapped where these dikes 

are thick (up to 15 m-thick) and are useful for bedrock offsets across brittle faults. 

 The hypabyssal Tordillo Andesite (Tat) is locally observed below Oligocene and 

younger volcanic and sedimentary units. Tat is observed intruding only into basement rocks; 

its contact with Oligocene and younger rocks is an erosional nonconformity. Tat is a 

phaneritic andesite, too mafic to be considered Kt and too coarsely crystalline to be part of 

the overlying extrusive Miocene rocks. Tat consists of hornblende (up to 1.5 cm in length) 

>> plagioclase-feldspar > biotite > quartz. Ramos-Velázquez et al., (2008) also observed 
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outcrops of Tat in the Eco block where they reported a 62.5 ± 1.5 Ma K-Ar whole rock age. 

These Tat outcrops in the Eco block were not observed during this study and the limits of this 

unit in the Eco block are not delineated on the geologic map (Plate 1) nor on maps by 

Ramos-Velázquez et al., (2008). A candidate for the Tat feeder dike is observed within the 

San Miguel block, though petrographic examination is needed to verify the correlation.  

 The upper contact of all basement rocks is a nonconformity buried by both 

sedimentary and volcanic units typically deposited on an erosional surface lacking significant 

relief. At this nonconformity, paleosols were locally observed to have developed, with 

alteration penetrating up to 3 m into basement rocks. 

Group 1 

Tertiary Basal Sedimentary Rocks (Tcb) 

 Locally, coarse-grained conglomerate (Tcb) nonconformably overlies basement 

rocks. These basal deposits have purplish-gray to maroon matrix, are typically moderately- to 

well-stratified, and range from fine-grained sandstone to pebbly sandstones to cobble 

conglomerates with clast compositions dominated by andesite and less common clasts of all 

basement units. Together these deposits suggest a fluvial environment near a volcanic source. 

Uncommon pyroclastic breccias are also present in Tcb. Deposits of Tcb are up to 300 m 

thick with individual beds measuring up to 2 m-thick. 

 An Oligocene to Early Miocene age is assigned to Tcb, which is underlain by 

Cretaceous tonalite and overlain by Early Miocene volcanic rocks. This preferred age is 

based on three assumptions: (1) the time needed to exhume the underlying crystalline 

basement, (2) the dips of Tcb and the overlying Early Miocene volcanic rocks are 

indistinguishable, suggesting little time elapsed between deposition of both units, and (3) 
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clast composition appears similar to the overlying andesitic rocks, suggesting nearby arc-

related andesite flows older than, but related to, the overlying volcanic section where eroded 

and transported into the study area.  

Group 2 

Miocene Arc-related Volcanic Rocks 

 Arc-related volcanic rocks ranging from 200 - 700 m-thick overlie basement rocks in 

nonconformable contact or conformably overlie group one rocks. These group two volcanic 

deposits are likely related to arc volcanic activity associated with the Early- to Middle-

Miocene Comondú arc and subduction of progressively younger oceanic Farallon lithosphere 

(Gastil et al., 1979; Hausback, 1984). 

 In the southern part of the study area, this volcanic section is a thick sequence of 

andesitic flows and pyroclastic breccias (Tab), multiple flows consisting of a distinctive 

hornblende-rich porphyritic andesite (Tah), pyroclastic breccias (Tbp), and a basaltic-

andesite flow (Tba), that are typically ~700 meters in combined thickness. Tab is a 

moderately resistant unit that varies along strike from a maroon mono-lithologic andesitic 

pyroclastic breccia with rare blocks of Kt, to a porphyritic andesite flow with centimeter-

scale hornblende and plagioclase phenocrysts. Tah is a very resistant ridge- and cliff-forming 

unit that consists of multiple stacked andesitic flows that locally exhibits a 1 - 3 cm-spaced 

foliation. Each flow is a purplish-gray massive porphyritic andesite flow with centimeter-

scale hornblende (locally twinned) >> sub-centimeter plagioclase and olivine phenocrysts, 

and few xenolith boulders of Kt up to 60 cm in diameter. Tbp is a resistant unit that consists 

of multiple poly-lithologic pyroclastic breccia and tuff breccia layers containing 30-80% sub-

angular lithic fragments of dacite, andesite, rhyolite, and rare tonalite (Kt) up to 1 m in 
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diameter, 10-30% andesitic pumice up to 0.5 cm in diameter, and 40-60% tan and pink 

nonwelded ash matrix. Individual pyroclastic beds range from 0.5 to 2 m-thick, locally with 

an epiclastic layer up to 2 m-thick at the base of Tbp. Locally, a 2 m-thick light gray to 

purplish-gray basalt flow (Tbbp) is locally mapped within Tbp in the southernmost corner of 

the San Miguel block. Tba is a moderately-resistant basaltic andesite flow consisting of (1) a 

1-2 m-thick basal breccia of dark gray and pink scoria fragments with olivine and hornblende 

phenocrysts, (2) a 5 m-thick main body of dark purplish-gray poorly-foliated basaltic 

andesite with <10% phenocrysts of olivine (1-3 mm) and oxidized hornblende (1-5 mm), and 

(3) a 1-3 m-thick upper breccia similar to the basal breccia. The basal contact of Tba is sharp 

but undulatory on the underlying pyroclastic deposits (Tbp). 

 In the central and northern part of the study area, the group two volcanic section is 

mapped as undifferentiated andesite (Taun). Taun is generally thinner than the group two 

section to the south, ranging from 200 - 600 m-thick. It consists of aphanitic andesite or 

hornblende-rich porphyritic andesite with local and discontinuous 3 m-thick red pyroclastic 

beds mapped as internal marker beds. Taun to the north and the andesitic sequence in the 

south are likely coeval volcanic deposits formed from distinctive volcanic centers. Taun in 

the northern study area may correlate to Tah in the south, based on their similar abundance of 

hornblende phenocrysts observed in hand sample. Other units would presumably pinch out 

along strike. However, subsequent rift-related faulting complicates this correlation across the 

El Camino fault and further petrographic studies are required to verify the correlation. In the 

overlying sedimentary rocks, clasts from the southern and northern volcanic sections are 

usually indistinguishable, so any clast from the andesitic-rich group two section will be 

referred to as Ta2.  
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 Gastil and Krummenacher (1977b) reported K-Ar ages for two samples from this 

volcanic section within the study area: a 21.0 ± 0.8 Ma hornblende age on an andesite within 

the Cerro Tordillo block where Taun is observed, and both a 17.8 ± 0.8 Ma hornblende age 

and a 20.8 ± 5.7 Ma biotite age from a “dacite” within the Cerro Kino block where the thick 

southern volcanic sequence is observed. Because no quartz phenocrysts were observed from 

any unit within this volcanic sequence, this latter age is likely either a dacitic lapilli or block 

from within Tbp or a misidentified andesite flow. 

 Overlying both the southern volcanic sequence and the undifferentiated section in the 

north is a map unit dominated by both epiclastic and pyroclastic deposits (Tvs). Tvs varies 

from thick (220 m) resistant cliff-forming deposits that thicken to the south in the southern 

study area, to thick (120 m) and recessive deposits in the northern study area, to thin (0 - 30 

m) and recessive in the eastern study area. The best exposures of Tvs are in the Cerro Kino 

block, which consists of (1) a basal unit of moderately- to well-sorted fine- to medium-

grained orange volcaniclastic sandstone beds up to 10 cm-thick, (2) reversely-sorted orange 

and pink volcaniclastic debris-flow deposits with lower portions of each deposit typically 

consisting of 90% ash matrix, 0% pumice, and 10% lithic fragments of andesite, basaltic-

andesite, and tonalite, and upper portions typically consisting of 50% ash matrix, 5% pumice 

up to 10 cm in length, and 45% lithic fragments of andesite, basaltic-andesite, and tonalite up 

to 20 cm in length, (3) multiple welded ash-flow lapilli tuffs typically consisting of 70% ash 

and plagioclase phenocryst matrix, 5% flattened and devitrified pumice with plagioclase and 

hornblende phenocrysts, and 25% lithic fragments of andesite, basaltic-andesite, and tonalite 

up to 10 cm in diameter, (4) multiple 2 - 3 m-thick pisolitic tuffs comprised of spherical 

accretionary lapilli up to 5 cm-diameter, (5) a welded ash-flow lapilli tuff as (3) above, and 

(6) ~10 m of 10 - 50 cm-thick fluvial volcaniclastic beds of medium-grained sandstone and 
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coarse-gravel conglomerate. In the Cerro Tordillo block Tvs consists of (1) fluvial pebbly 

sandstone with subrounded to rounded clasts of underlying andesitic units, (2) poorly-

stratified burgundy-red clast-supported pebble-cobble conglomerate with angular to 

subrounded clasts of rhyolite, andesite, and rare crystalline basement up to 30 cm in 

diameter, (3) poorly-stratified clast-supported sandy cobble-boulder conglomerate and cross-

bedded pebbly sandstone with subrounded clasts of andesite up to 30 cm in diameter. 

Rhyolite of Punta Chueca (Trpc) 

 The Rhyolite of Punta Chueca (Trpc) locally underlies Ttsf in the southwestern corner 

of the Punta Chueca block. Within these limited outcrops, Trpc is 10 to 30 m thick and 

exhibits a 1 - 5 cm-spaced flow foliation. 

Tuff of San Felipe (Ttsf) 

 Deposits of the Tuff of San Felipe (Ttsf), a regionally extensive Miocene ignimbrite 

deposit that blanketed >4,000km2 of present-day northeastern Baja California and western 

Sonora (Oskin and Stock, 2003a), can be found throughout the study area and act as an 

excellent marker for structural studies. In coastal Sonora Ttsf lies disconformably on older 

group two rocks and generally thickens to the northwest, from 135 m thick in the Cerro Kino 

block (Oskin, 2002), to ~200 m thick in the Eco block, to ~340 m thick in the northern Cerro 

Tordillo block, to >500 m thick in the Punta Chueca block. After stretched pumice-fiamme 

lineations measured in tilted deposits of Ttsf (flattening axes ratio up to 20:1) are restored 

about a strike-line axis, pumice-fiamme long axes suggest an approximate E-W flow 

direction for the Ttsf eruption in the northern study area (Fig. 7). These data combined with 

the observed thickening trends for Ttsf are consistent with Ttsf the vent location proposed by 
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Oskin (2002) and Oskin and Stock (2003a) to lie just west of the northwestern edge of the 

study area, near Punta Chueca. 

 Ttsf consists of up to three cooling units, each varying in thickness across the study 

area. The first cooling unit (Ttsf1) consists of (1) a basal nonwelded yellow airfall tuff with 

few volcanic lithics up to 1.0 cm in diameter, and is observed to be 0.5 to 7 m-thick 

(typically <1 m-thick), overlain by (2) black glassy vitrophyre 0.5 to 8 m thick (anomalously 

~20 - 30 m thick in the Granito block), with occasional sub-centimeter oxidized spherulites. 

The vitrophyre grades upward into (3) a densely welded spherulite-rich zone of pumice-poor 

brick-red tuff up to 5 m thick. Some large spherulites have been dissolved away leaving 

voids (geodes) up to 10-cm diameter containing concentrations of euhedral quartz and/or 

chalcedony on internal walls. The spherulitic zone grades upward into (4) a variably thick 

densely welded zone of pumice-fiamme-rich burgundy lapilli tuff with a distinctive eutaxitic 

foliation of pumice-fiamme. Large pumice are flattened to 0.1 - 2 cm thick and stretched up 

to 1 m in length measured in the lineation direction. Ttsf commonly displays a platy or fissile 

weathering pattern, where large resistant pumice-fiamme protrude from the recessive vapor-

phase altered welded ash matrix. Pumice concentration increases higher in the unit, as does 

the degree of vapor-phase alteration. Segregation pipes oriented orthogonal to eutaxitic 

foliation are observed in the upper few meters. Local internal rheomorphic flow deformation 

is observed as strong folding and/or brecciation of foliated pumice-fiamme, commonly 

overturned and/or oriented perpendicular to the strike of the unit. Locally, Ttsf1 contains <5 

m of distinctively foliated fiamme-rich tuff immediately above the basal vitrophyre, below 

the spherulitic-rich zone. Within fiamme-rich portions of Ttsf1, rare to uncommon pods of 

distinctive cognate black rhyolite lava inclusions that contain alkali-feldspar, plagioclase, and 

fayalite phenocrysts (Oskin and Stock, 2003a) are observed. 
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Figure 7.    Stereonet shows trend and plunge of titled (right center of net) and corrected (right edge of net, black arrows on 
map) stretched pumice lineations measured in the Tuff of San Felipe (Ttsf) ignimbrite deposit. After corrections for the structural 
tilting of these lines, these two lineations suggest an easterly flow direction and a vent location for the Tuff of San Felipe west of 
the northern study area. This location agrees with previous work (Oskin, 2002) that suggested a vent location between the town 
of Punta Chueca and the northwestern edge of the study area. If dextral offset is assumed for the Puerto Rico fault system, 
restoration of this slip, not yet quantified, would likely strengthen the precision of these data.
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 The second cooling unit (Ttsf2) consists of (1) a basal black vitrophyre up to 5 m 

thick with tabular segregation pipes up to 5 cm thick oriented approximately paleo-vertical 

(i.e. orthogonal to eutaxitic foliation), overlain by (2) a yellow poorly welded ash-flow lapilli 

tuff 8-15 m thick with similar segregation pipes as its underlying vitrophyre. Ttsf2 is 

observed only in the central and northern study area, appears to thicken from southeast 

(Cerro Tordillo block) to northwest (Punta Chueca block), similar to the thickening trend of 

the general Ttsf unit, and is best exposed in the southeast corner of the Cerro Tordillo block. 

 The third cooling unit (Ttsf3) consists of (1) a ~1 m-thick basal surge deposit of 

trough cross-bedded dunes and antidunes of orangish-yellow ash, overlain by (2) a black 

glassy vitrophyre 0.1 to 1.0 m thick, overlain by (3) a densely welded spherulitic-rich zone of 

pumice-poor brick-red tuff up to 2 m thick with spherulite geodes up to 5-cm diameter 

containing concentrations of euhedral quartz or chalcedony on internal walls, which grades 

upward into (4) a densely welded zone similar to upper Ttsf1. Ttsf3 is best exposed in the 

southeast corner of the Cerro Tordillo block. 

 Where all three cooling units are observed, the densely welded Ttsf1 and Ttsf3 units 

are both thicker than Ttsf2. The Ttsf2 cooling unit is of limited regional extent. Where Ttsf2 is 

not present, only the Ttsf1 unit is mapped. However, in the Cerro Kino block subtle and 

discontinuous evidence exists for two cooling units (Oskin, 2002) that likely represent both 

of the densely welded cooling units of Ttsf1 and Ttsf3, which are basically indistinguishable 

without Ttsf2 to separate them. Subtle evidence for a similar tuff stratigraphy (Ttsf3 on Ttsf1) 

may also exist in the Eco block. Both the Ttsf1 and Ttsf3 cooling units represent large-

volume eruptions that likely occurred within hours to days of each other and are 

representative of the regionally extensive outcrops of Ttsf observed across both margins of 

the northern Gulf of California. A similar tuff stratigraphy of two cooling units within Ttsf 
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may also exist at the new paleomagnetic reference site in central Baja California discussed in 

detail later. When referring to Ttsf as a chrono-lithologic unit, the more general acronym, 

Ttsf, will be used and Ttsf may include from one to three cooling units. 

 Deposits of the Tuff of San Felipe across the northern Gulf of California consistently 

have an unusual shallow up (~5°) to the southwest direction of paleomagnetic remanence 

(Stock et al., 1999; Oskin and Stock, 2003a; this study). Even taking into account magnetic 

secular variation, this remanence direction lies far from the expected Miocene magnetic field 

at this latitude, and likely cooled during a magnetic field excursion or reversal during 

reversed polarity subchron C5Ar.2r (Stock et al., 1999). This unique magnetic signature only 

strengthens the utility of the Tuff of San Felipe as a regional tectonic marker. 

 Geochronologic ages for Ttsf from northeastern Baja California (Gastil et al., 1979; 

Stock, 1989; Lewis, 1996; Nagy et al., 1999; Stock et al., 1999) and central and coastal 

Sonora (Paz-Moreno, 1992; McDowell et al., 1997; Page et al., 2003; Vidal Solano et al., 

2005; Vidal-Solano et al., 2007; Bennett et al., 2007) display a significant range of calculated 

ages (9.1 – 16.7 Ma), for the most part, using the K-Ar technique on either single crystal or 

whole-rock measurements. Stock et al. (1999) point out evidence that some of these 

discrepant ages are locally constrained by other isotopically-dated units, and suggest that a 

12.6 Ma age corroborates best with its stratigraphic position. A more detailed examination of 

high-precision 40Ar/39Ar ages on single sanidine crystals separated from trachyte inclusions 

within Ttsf from Baja California (Stock et al., 2008) demonstrate that a minor xenocrystic 

contamination may slightly influence calculated ages for Ttsf. Stock et al. (2008) suggest that 

an age of 12.35 Ma may be the most accurate. Nevertheless, Bennett et al. (2007) reported an 

40Ar/39Ar age of 12.50 ± 0.08 Ma on multiple anorthoclases from Ttsf in the study area (Fig. 
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8A), consistent with an 40Ar/39Ar age of 12.43 ± 0.14 Ma from the Santa Rosa Basin of 

northeastern Baja California (Stock et al., 1999). The age from Bennett et al. (2007) is also 

consistent with 40Ar/39Ar ages of 12.44 ± 0.05 Ma and 12.56 ± 0.08 Ma from central Sonora 

(Vidal Solano et al., 2005) on ignimbrite deposits that Stock et al. (2006) correlate to Ttsf 

using paleomagnetic methods. Additionally, Ttsf may also correlate to thick ignimbrite 

deposits of approximately the same age (11.9 – 12.5 Ma) (Paz-Moreno, 1992; McDowell et 

al., 1997; Page et al., 2003; Vidal-Solano et al., 2007) or that have similar unique 

paleomagnetic signature (Hernández-Ménez et al., 2008) that are located ~100 km north, 

east, and south of Hermosillo in central Sonora. 

Group 3 

Tuff of Punta Chueca (Ttpc) 

 The Tuff of Punta Chueca (Ttpc) is a recessive, nonwelded, pumice-rich ash-flow 

tuff, which locally overlies Ttsf in the northern study area. Ttpc consists of two distinct units: 

(1) a lower nonwelded lithic-poor, 20 m-thick pyroclastic flow deposit with 1 - 3% 

centimeter-scale volcanic lithics, 3 - 10% pumice up to 20 cm, and locally displays a black 

basal vitrophyre 1 - 3 m thick, and (2) an upper nonwelded lithic-rich, 70 m-thick pyroclastic 

flow deposit with up to 10% volcanic lithics up to 2 cm and 3 - 10% pumice up to 5 cm, and 

sedimentary structures (e.g. trough cross-bedding) that indicate the upper 1 - 2 meters are 

fluvially reworked. Outcrops of Ttpc are limited due to the limited depositional extent of this 

unit and/or erosion of Ttpc prior to deposition of overlying conglomeratic units. The age of 

Ttpc is constrained by the underlying 12.5 Ma Tuff of San Felipe and the overlying 11.5 Ma 

Basalt of Punta Chueca. 
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Basalt of Punta Chueca (Tbpc) 

 An aphanitic, locally vesicular basalt flow (Tbpc), ~5 - 10 m thick, overlies the Tuff 

of Punta Chueca. Outcrops of Tbpc typically consist of resistant, yet unstable, ridgelines of 

unorganized piles of large Tbpc boulders, limiting exposures for obtaining reliable structural 

information. Vague 1 - 15 cm-spaced foliations are measured within this unit within the 

limited extent of intact outcrops. Where the basal contact of Tbpc is exposed, the lower 1 m 

is brecciated and in sharp planar contact with the underlying Ttpc. Oskin et al. (2003) dated 

volcanic matrix from Tbpc in the study area with 40Ar/39Ar isotopic methods, yielding a 

plateau age of 11.47 ± 0.05 Ma (Fig. 8B). 

Tuff of Hast Eucla (Tthe) 

 The Tuff of Hast Eucla (Tthe) is a poorly welded airfall tuff that is locally exposed 

only within the Cerro Kino block. Tthe is light lime green on fresh surfaces, but weathers to 

orangish-yellow and contains common to abundant andesitic lithic fragments up to 0.5 cm in 

diameter. Tthe overlies Ttsf and is typically 1 - 4 m thick, but thickens within the Kino 

Syncline, possibly due to axial compression and bulk thickening from folding. 

Rhyolite of Hast Eucla (Trhe) 

 The Rhyolite of Hast Eucla (Trhe) locally overlies both Ttsf and Tthe in the Cerro 

Kino block, and overlies only Ttsf in the Granito block. This unit is up to 90 m thick in the 

Cerro Kino block and up to 60 m thick in the Granito block and commonly exhibits a 1 - 5 

cm-spaced flow foliation. These inclined foliation values were measured, but ignored during 

cross-section reconstructions, because these foliations are not a reliable paleo-horizontal 

datum. 
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Rhyolite of Valle del Eco (Trve) 

 The Rhyolite of Valle del Eco (Trve) locally overlies Ttsf in the eastern portion of the 

Eco block. Within these limited outcrops, Trpc is ~15 m thick and exhibits a 1 - 8 cm-spaced 

flow foliation. 

 The packages of (1) Tuff of Hast Eucla and the Rhyolite of Hast Eucla in the southern 

study area, (2) the Rhyolite of Valle del Eco in the central study area, and (3) the Tuff of 

Punta Chueca and the Basalt of Punta Chueca in the northern study area, are not observed in 

contact with the other. Additionally, each of these packages overlie the Tuff of San Felipe, 

and underlie all basin conglomerates. Due to these contact relationships the age of these 

packages relative to each other is unknown. 

Late Miocene Lower Conglomerates (Tcl) 

 Three distinct sedimentary basins have been identified that formed in the hanging 

walls of the Punta Chueca, Eco, and Aeropuerto faults in the northern, eastern, and southern 

study area respectively (Fig. 6). All sedimentary rocks near the base of these basins (Tcl) are 

non-marine deposits, despite proximity of the study area to the Gulf of California. Surface 

exposures of Tcl are limited to the Punta Chueca basin, where they are ~225 m thick, and a 

small exposure in the Eco basin, where Tcl is <10 m thick. Tcl may be present, but 

unexposed, within the Kino basin. Two tuff deposits are interbedded within Tcl: the Tuff of 

Cerro Tordillo and the Tuffs of Mesa Cuadrada.  

 Deposits of Tcl consist of gray, tan, and orange poorly- to well-stratified, poorly- to 

well-sorted, fine-grained sandstone with centimeter-scale beds, pebbly sandstone, and sandy- 

to cobble-conglomerate, with individual stratified beds up to 2 m thick. Within Tcl, a 15 m-

thick package (Tsl) of fine- to medium-grained light pink to buff sandstone with abundant 
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cross-beds up to 5 cm thick is observed. Clast composition of Tcl consists of Kt, Taun, Ttsf, 

and Tbpc, which provides some relative age relationships for Tcl; Tcl is younger than the 

underlying Tbpc and older than overlying Tuffs of Mesa Cuadrada. The lower contact of Tcl 

is exposed as an angular unconformity in the Punta Chueca block on the underlying Ttsf3, 

and in the Eco block on Trve. 

Tuff of Cerro Tordillo (Ttct) 

 The Tuff of Cerro Tordillo (Ttct) is a Late Miocene bedded airfall deposit exposed 

only in the Punta Chueca block 80 m above the base of Tcl. Ttct is a 2 m-thick gray to yellow 

tuff with centimeter-scale sorted beds. Dorsey et al. (2008) obtained a SHRIMP 206Pb/238U 

weighted mean age of 6.53 ± 0.18 Ma (n=14; MSWD=1.3) on zircons separated from Ttct 

(Fig. 9A).  

Tuffs of Mesa Cuadrada (Ttmc) 

 The Tuffs of Mesa Cuadrada (Ttmc) is another regionally extensive Miocene 

ignimbrite deposit that blanketed >2,100 km2 of present-day northeastern Baja California 

(Stock, 1989; Lewis, 1996; Nagy et al., 1999), Isla Tiburón (Oskin and Stock, 2003a,b), and 

coastal Sonora (Oskin and Martín-Barajas, 2003). Only the Tmr3 cooling unit of the Tuffs of 

Mesa Cuadrada of Oskin and Stock (2003a) is present within the study area. 

 Deposits of Ttmc, up to 30 m thick, are found near the base of the Punta Chueca and 

Eco basins, and Ttmc may be present, but unexposed, within the Kino basin. Ttmc in coastal 

Sonora is a poorly welded to nonwelded salmon-colored ash-flow tuff with 5 - 10% 

phenocrysts of alkali-feldspar ≈ quartz >> hornblende ≈ zircon ≈ sphene ≈ pyroxene, 5% 

poorly welded to nonwelded pumice with similar phenocrysts as matrix, 5 - 10% very 

38



8.2 7.8 7.4 7.0 6.6 6.2 5.8 5.4

0

0.02

0.04

0.06

0.08

0.10

0.12

750 850 950 1050

Tu� of Cerro Tordillo
BK-08-32

data-point error ellipses are 2-sigma

20
7
Pb

/20
6
Pb

238U/206Pb

Mean 206 Pb/238 U age =

6.53 ± 0.18 Ma
MSWD = 1.3 (2 sigma)

1150 5.05.45.86.26.67.07.47.88.2

13

Mean 206 Pb/238 U age =

6.53 ± 0.18 Ma
MSWD = 1.3 (2 sigma)

data-point error boxes are 2-sigma

206Pb/ 238U Age (Ma)

Tu� of
Cerro

Tordillo
BK-08-32

10

4

14

12

7

6

16

15

5

2

9

8

11

2

6.76 ± 0.27

Tu� of Cerro Tordillo
BK-08-32

0.1 mm

1

97.0 ± 2.0

6.50 ± 0.32
6.54 ± 0.236.34 ± 0.36

6.15 ± 0.26

6.69 ± 0.30
6.47 ± 0.29 6.45 ± 0.28 6.99 ± 0.31

5.86 ± 0.23

6.15 ± 0.23

6.38 ± 0.26
7.22 ± 0.32

6.91 ± 0.27 6.14 ± 0.35

3

4 5
6

7

8

9
10

11
12

13
14

15 16

Figure 9.   206Pb/238U geochronology for tuffs interbedded within syn-tectonic basin sediments. (A) Tera-Wasserburg concordia 
diagram, age spectrum diagram, and optical cathodoluminescence image of analyzed zircon grains from the Tuff of Cerro 
Tordillo (Dorsey et al., 2008).

[Samples collected during 2008 field season of this study. Analyses conducted by collaborator, Alex Iriondo, from UNAM-
Juriquilla.]

Figure 9B continues on next page.
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Figure 9. (cont.)   206Pb/238U geochronology for tuffs interbedded within syn-tectonic basin sediments.(B) Tera-Wasserburg 
concordia diagram, age spectrum diagram, relative probability age diagram with blow-up of Miocene time, and optical cathodo-
luminescence image of analyzed zircon grains from the Tuff of Cerro Kino (unpublished, Alex Iriondo). The concordant 
206Pb/238U age for the Tuff of Cerro Tordillo helps constrain timing for earliest Gulf-related extension and basin formation. The 
wide distribution of ages obtained from Tuff of Cerro Kino zircons, the youngest zircon is 6.75 ± 0.15 Ma, does not corroborate 
with its stratigraphic position; the Tuff of Cerro Kino is interbedded within sediments that bear 6.4 Ma Tuffs of Mesa Cuadrada 
clasts. An 40Ar/39Ar age on sanidines from the Tuff of Cerro Kino is in progress to hopefully determine its age.

[Samples collected during 2008 field season of this study. Analyses conducted by collaborator, Alex Iriondo, from UNAM-
Juriquilla.]
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angular lithic fragments of dark brown to purple aphanitic andesite and rhyolite typically 0.5 

- 2 cm in diameter. Accidental lithic fragments of Taun and Ttsf are common within the 

lowest 1 - 2 m of this deposit. Both the matrix and pumice weather to light orange. Welding 

in Ttmc increases up section. Tabular, lithic-rich segregation pipes 8 - 15 cm thick are locally 

observed in Ttmc perpendicular to, or at high angles to outcrop strike. Exposures of Ttmc in 

the Punta Chueca block are 30 m thick, which can be sub-divided into a lower ~17 m-thick 

orange-salmon unit and an upper ~13 m-thick yellow unit. Samples for both geochronology 

and paleomagnetism were collected from the lower of these two sub-units in Ttmc. Bennett et 

al. (2007) reported an 40Ar/39Ar age of 6.39 ± 0.02 Ma on multiple sanidines from Ttmc in the 

study area (Fig. 8C), consistent with isotopic ages from this unit in northeastern Baja 

California (Stock, 1989; Lewis, 1996; Nagy et al., 1999) and Isla Tiburón (Gastil and 

Krummenacher, 1977; Oskin, 2002). 

 In the Punta Chueca and Eco blocks, Ttmc overlies group three conglomerates (Tcl) 

and is overlain by group four conglomerates (Tcu). In these blocks, both the upper and lower 

contacts of Ttmc are disconformities. In the Guadalupe and Luna blocks, Ttmc overlies Ttsf 

and Taun in angular unconformable contact and is overlain by group four conglomerates in 

angular unconformable contact. Where these Ttmc contacts are an angular unconformity, 

they likely transition laterally into disconformable contacts with the underlying and overlying 

conglomerates. This transition most likely occurs in the down-dip direction and is not 

exposed in these fault blocks. 

 Deposits of the Tuffs of Mesa Cuadrada across the northern Gulf of California 

consistently have a typical down (~54°) to the north-northeast direction of paleomagnetic 

remanence. This direction was best determined on the Tmr3b unit of Lewis and Stock (1998) 

from Mesa Cuadrada in northeastern Baja California, and is close to the expected Miocene 
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magnetic field at this latitude. Ttmc likely cooled during normal polarity subchron C3An.2n 

(Lewis and Stock, 1998). 

Group 4 

Latest Miocene Upper Conglomerates (Tcu) 

 Deposition of group four conglomerates (Tcu) spanned from 6.4 Ma to probably latest 

Miocene time. Deposits of Tcu consist of gray, tan, and orange, massive to poorly- to 

moderately-stratified, poorly- to moderately-sorted, laminated fine-grained sandstone, pebbly 

sandstone, pebble-conglomerate, clast-supported and matrix-supported cobble-conglomerate, 

and clast supported boulder-conglomerate, with individual stratified beds up to 2 m thick. 

Tcu also contains few discontinuous and undulatory white airfall ash beds 5 - 15 cm thick 

between cobble-conglomerate beds.  

 All sedimentary rocks of Tcu are non-marine. Debris-flow deposits dominate Tcu 

with some sheet flood deposits. Thicker sections of Tcu (at least 225 m) are found adjacent to 

the Punta Chueca fault. Dorsey et al. (2008) report restored paleocurrents in Tcu that reveal 

consistent overall transport to the SSW, and have interpreted Tcu to record deposition in a 

10- to 20-km wide belt of bajadas that formed on the margin of the nascent northern Gulf of 

California. Using the updated paleomagnetic reference site (discussed later) for restoration, 

paleocurrent data in Tcu reflect a more S-directed overall transport direction (Fig. 10). 

 The lower contact of Tcu varies across the study area from (1) conformable on Ttmc 

(e.g. Punta Chueca block), to (2) a gentle to moderate angular unconformity on underlying 

units (on Ttmc and Taun in the San Miguel block, on Trhe and Ttsf in the Cerro Kino and 

Granito blocks, and on Ttmc and Ttsf in the Eco block), to (3) an uncommon and locally 
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steep angular unconformity on Ttsf in the Eco block, where erosion carved small canyons 

with near-vertical cliffs and Tcu filled these canyons in buttress unconformity. 

 Clast composition of Tcu varies across fault blocks and by stratigraphic level (Fig. 

10). In the Punta Chueca block adjacent to the Punta Chueca fault, concentrations of foot 

wall units (e.g. Kt) increase towards the fault, evidence for tectonic relief and syntectonic 

deposition of Tcu. Further down section and away from the fault Tcu clast composition 

consists of Ta2 >> Ttsf > Kgr ≈ Kt ≈ Pzms > Ttmc. In the Eco block, Tcu clast composition 

changes from rich in Ttsf clasts near the basal contact to rich in Ta2 clasts up section near the 

Eco fault, which records erosion, stripping, and exposure of progressively older units from 

the foot wall. Overall, Tcu clast composition here consists of Ttsf >> Ta2 > Kt > Kgr. In the 

San Miguel block, Tcu clast composition consists of Ta2 > Ttsf > Kgr ≈ Kt ≈ Ttmc ≈ Pzms. In 

the Luna block at the basal erosional contact of Tcu, large boulders of Kt and Ttsf up to 2 m 

in length are observed in a poorly-stratified cobble- to boulder-conglomerate. In the Cerro 

Kino block Tcu clast composition includes Ta2 >> Ttsf > Ttmc ≈ Trhe. The presence of 

pumice and salmon-colored fragments of Ttmc near the Tcu basal contact provide a reliable 

relative age for a basin with no surface exposures of Ttmc; Tcu here must be younger than the 

6.4 Ma Ttmc. Tcu is almost absent from the Cerro Tordillo block. 

Undifferentiated Conglomerate (Tcun) 

 In the southwestern corner of the Punta Chueca block, an isolated package of 

undifferentiated basin conglomerate (Tcun) is mapped. Because Ttmc is not present in either 

adjacent outcrop or in the clast composition of Tcun, Tcun cannot be differentiated as either 

group three (Tcl) or group four (Tcu) conglomerates. This package is dominated by poorly-

sorted poorly-stratified cobble-conglomerate, ranging from coarse-grained sandstone to  
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Figure 10.   Clast counts and paleocurrent data recorded in  the Upper Conglomerate unit (Tcu)  from all three coastal Sonora 
syn-tectonic basins by Dorsey et al. (2008). These published paleocurrent data were corrected for clockwise vertical-axis 
rotations determined by paleomagnetic sampling from coastal Sonora using the previous reference site of Mesa Cuadrada 
(Lewis and Stock, 1998) for the Tuff of San Felipe rotation calculations. Additional rotation corrections are applied and shown 
here using the new paleomagnetic reference site for the Tuff of San Felipe, a regional ignimbrite used for rotation corrections. 
‘Porphyritic Andesite’ is a distinct lithologic subset of the group two andesitic rocks, likely equivalent to both ‘Taun’ and ‘Tah’. 
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boulder-conglomerate, with subrounded to angular clasts of Ttsf >>> Ta2 ≈ Tbpc, with 

stratified beds up to 1 m thick. This package of Tcun appears to have been deposited in a ~1 

km-wide drainage with buttress contacts against steep canyon walls carved into Ttsf. 

Tuff of Cerro Kino (Ttck) 

 The Tuff of Cerro Kino (Ttck) is a local airfall tuff that is exposed only in the Cerro 

Kino block and is interbedded within Tcu approximately 200 m stratigraphically above the 

angular unconformity with the underlying Rhyolite of Hast Eucla. 

 Ttck is 14 cm thick in the Cerro Kino block and consists of (1) a lower 8 cm thick 

laminated (reworked?) portion, and (2) an upper 6 cm thick unsorted portion. The upper 

portion of Ttck was sampled for geochronology, which contains quartz, sanidine, and zircon 

phenocrysts, pink to red rhyolite and welded rhyolitic tuff (Ttsf?) lithic fragments up to 0.5 

cm in diameter. 

 A SHRIMP 206Pb/238U age on zircons from Ttck was attempted (Iriondo, pers. comm; 

Fig. 9B); however, the zircon age population is dominated by, if not entirely composed of, 

inherited zircon crystals of older than the expected age of the unit from stratigraphic 

relations. Individual zircon crystals yield ages that range from 148.8 - 6.75 Ma with multiple 

clusters of ages that correspond to crystalline basement rocks, arc-related volcanic rocks, and 

the Tuff of San Felipe. The youngest zircon analyzed for Ttck (6.75 ± 0.15 Ma) still does not 

corroborate its stratigraphic position, because it is interbedded within sedimentary rocks that 

contain clasts from the 6.4 Ma Ttmc. These data indicate that Ttck is likely to be fluvially 

reworked, incorporating exotic zircons from older lithologic units in the area. If the upper 6 

cm-thick portion of Ttck is a reworked ash deposit, this would corroborate the observation 

that the underlying lower 8 cm-thick portion of Ttck also show evidence that it has been 
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reworked. This U/Pb age remains unpublished, and an 40Ar/39Ar age on sanidines from Ttmc 

is in progress (Iriondo, pers. comm.) that will hopefully resolve the age of Ttck. If a 

consistent age distribution is obtained for Ttck, its age will help to better constrain the timing 

of earliest observed deposition in the Kino basin.  

Quaternary Deposits 

 Active and recently active Quaternary deposits are abundant throughout the study 

area. Quaternary alluvium (Qal) is observed in typically thin, non-marine, sediment bypass 

environments (pediments) between intervening hillslopes of bedrock outcrops (Plate 1). 

Adjacent to the modern shoreline, active dissection of Qal deposits reveals exposures of the 

angular, coarse sand to cobbly sand deposits of modern catchment origin, dipping gently 

seaward. Additional Quaternary deposits include older, dissected alluvium (Qoa), recent 

landslide deposits (Qls), beach deposits (Qb, Qcbl), and recent playa deposits in areas at or 

below sea level (Qpl) (Plate 1).  

Marine Strata 

 Limited evidence for marine strata exists within the study area. Along the shoreline 

between Punta Ignacio and Punta San Miguel, occasional coquina deposits, too small to map, 

of likely late Pleistocene age (Ortlieb, 1991) are observed in nonconformable contact with 

the underlying tonalite basement. This unconformity is a sub-horizontal wave cut bench 

carved into the underlying basement and is currently observed approximately 2 m above 

modern-day sea level. These deposits are thin (<3 m) and likely exist as wedge deposits that 

pinch out to the east beneath the younger overlying thick alluvial deposits (Qal). Throughout 

the study area, abundant evidence exists for higher sea level that likely corresponds with the 

last largest interglacial maximum ca. 125 ka (MIS Stage 5e; Ortlieb, 1991), including: (1) a 
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~2 m-elevation horizontal bedrock bench carved into bedrock on the west-facing cliffs of 

Punta Ignacio, (2) 2 - 3 m-elevation shell-lag shoreface deposits (Qm) (flat northeastern 

portion of Isla Alcatraz), (3) common abandoned non-marine alluvial surfaces with modern 

drainages dissecting down ~2-5 m, working towards equilibrium with a lower modern-day 

base level, and (4) observations made by McGee and Johnson (1896) of recent marine shells 

found in the low-lying areas in the southeastern corner of the study area.  

RIFT STRUCTURES 

 The coastal Sonora region is dissected by normal, dextral, sinistral, and oblique-

normal faults (Fig. 6) associated with the Neogene opening of the northern Gulf of California 

rift (Fig. 4). Within the study area, three tectonic basins are host to group three and four syn-

rift deposits that formed over the hanging walls of normal faults systems (Fig. 6). These 

basins are floored by older group two and earliest group three rocks. Packages of these 

syntectonic deposits and their basin floor rocks are both tilted down to the east, where 

average dips of beds shallow from 69° in pre-12.5 Ma rocks (n=93), to 57° in 12.5 - 6.6 Ma 

rocks (n=248), to 21° in modern Gulf rocks (n=135) (Fig. 11). Where exposed today, these 

major normal faults systems are N- to NE-striking with dips ranging from very low (<5°) to 

moderate (~55°) angles. The two southernmost basins (Eco and Kino basins) are cut by sub-

vertical NW-striking dextral faults, conjugate NNE-striking sinistral faults, and high-angle 

N-striking normal faults (Fig. 6). 

 Gastil and Krummenacher (1977a; 1977b) recognized the study area to be within a 

northwest-trending strike-slip system and broadly located some of the structures mapped 

during this study. Oskin (2002) more precisely located the majority of coastal Sonora 

structures observed within the study area. These rift-related structures are illustrated on the  
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Figure 11.   Stereonet plot of poles to planar structures that approximate paleohorizontal (e.g. bedding in sedimentary strata, 
ignimbrite basal contact, eutaxitic foliation, andesitic flow foliation, andesitic compositional foliation, etc.). Pre-12.5 Ma and 
12.5 - ~11 Ma lithologic units are both steeply inclined. The 12° difference between these packages of rocks could: (1) be 
evidence for minor tilting pre-11 Ma, or (2) be caused by anomalous eutaxitic foliation orientations within the 12.5 Ma Tuff of 
San Felipe (Ttsf), which display the occasional shallow or even west-dipping foliation, typically where syn-depositional internal 
rheomorphic flow deformed pumice fiamme away from paleo-horizontal. Syn-tectonic units are typically tilted from ~55° - 5°, 
while older pre-extension units are tilted from ~40° - 90°.
(Equal Area, Lower Hemisphere projection)
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1:10,000-scale geologic map (Plate 1). All mapped structures in the study area lack evidence 

for Quaternary activity, although evidence for minor Quaternary activity on the Infernillo 

fault has been reported just northwest of the study area (Ortlieb, 1991). With the exception of 

the Sacrificio fault, this study assigns new names to previously unnamed rift-related faults, 

typically with significant amounts (>1 km) of slip (Fig. 6). 

Sacrificio Fault Zone 

 Gastil and Krummenacher (1977a) first identified (but did not name) the Sacrificio 

fault zone, and reported it as a NW-striking dextral structure with a possible dip-slip 

component (Gastil and Krummenacher, 1977b). Oskin (2002) named this feature the 

Sacrificio fault and located it similar to Gastil and Krummenacher (1977a). In the 

northeastern part of the study area, the Sacrificio fault zone consists of multiple sub-parallel 

strike-slip faults (Plate 1, Figs. 4 & 6). Total dextral displacement across the Sacrificio fault 

zone is estimated from matching conglomerate outcrops (Figs. 1 & 4) that bear unique 

fusulinid-rich limestone clasts exposed in both Baja California (Gastil et al., 1973; Bryant, 

1986) and just north of the study area in coastal Sonora (Gastil and Krummenacher, 1977b). 

After closing the northern Gulf of California across the Upper Delfín basin (Oskin et al., 

2001), these matching outcrops from opposite margins of the present-day Gulf of California 

require less than a few tens of kilometers of dextral restoration across the Sacrificio fault 

zone (Oskin and Stock, 2003a). The Sacrificio fault zone is likely a significant sub-vertical 

dextral structure that appears to either absorb displacement from or truncate nearby 

structures. 
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Puerto Rico Fault 

 The Puerto Rico fault is a NW-striking structure near the eastern edge of the study 

area (Plate 1, Fig. 6). The Puerto Rico fault is poorly exposed and was identified entirely via 

interpretation of Quickbird satellite imagery where outcrop patterns are truncated, 

presumably by dextral displacement. The Puerto Rico fault is concealed in the southern study 

area and appears to merge with the Sacrificio fault zone in the northern study area. The 

Puerto Rico fault is likely a sub-vertical dextral fault and may be a splay of the Sacrificio 

fault. Total displacement along the Puerto Rico fault is difficult to estimate due to the lack of 

exposures to the east that could be used as markers, although an estimate of 2.8 km of dextral 

displacement is predicted from a structural model presented below. 

Bahía Kino Fault 

 The Bahía Kino fault consists of two vertical, northwest-striking, dextral branches 

that traverse the central study area (Plate 1, Figs. 4 & 6). Field mapping reveals truncation of 

all pre-Quaternary map units across both branches of the Bahía Kino fault. Dextral motion 

and drag folding on the western branch of the Bahía Kino fault is likely the cause of the 

asymmetric SSE-plunging Kino syncline (Plate 1, Cerro Kino block) where all pre-

Quaternary map units are deformed. Deformation associated with the Kino Syncline must 

post-date 6.4 Ma, because these deformed sedimentary rocks contain Ttmc clasts. 

 Apparent dextral bedrock offsets on the western branch of the Bahía Kino fault vary 

from 4.55 km (base of group Ttsf) in the south to 2.9 km (an average of 2.7 km base of group 

two, 3.1 km base of Ttsf) in the north. On the eastern branch, offsets vary from 0.25 km (base 

of group two) in the south, to 1.25 km (base of both group two and group four) in the central 

study area, to 0.75 km (felsic dike in group one) in the north-central study area. 
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 Both Tat and the distinctive southern volcanic sequence can be used as a marker for 

fault slip in the southern study area. These units are observed in the San Miguel, Cerro Kino, 

Granito, and Rancho Nuevo blocks and strengthen the correlation amongst these southern 

fault blocks across both branches of the Bahía Kino fault. 

El Camino Fault 

The El Camino fault is a cryptic NW-striking structure in the south-central study area 

between the Guadalupe and San Miguel fault blocks (Plate 1, Fig. 6). The El Camino fault is 

mostly unexposed and its few bedrock locations are entirely inferred by (1) the apparent 

truncation of the top-of-basement nonconformity observed in the San Miguel block, (2) the 

disparate group two arc-related volcanic rocks across this boundary, (3) the apparent 

truncation of Guadalupe block Ttmc outcrops across this boundary, and (4) the apparent 

truncation of San Miguel block Tvs outcrops across this boundary (Plate 1). Because multiple 

units do not match across this boundary, total displacement along the El Camino fault is 

difficult to estimate, although an estimate of 2.2 km of dextral displacement is predicted from 

a structural model presented below. It is possible that this boundary is not just a discrete fault 

boundary, but also corresponds with a gradational lithologic boundary between different 

suites of arc-related group two rocks (Fig. 5, Plate 1). The El Camino fault is inferred to be a 

vertical dextral structure, but it could also be a SW-dipping normal fault. 

Infernillo Fault 

 The NW-striking Infernillo fault (Plate 1, Figs. 4 & 6) first appeared on maps by 

Gastil and Krummenacher (1977a; 1977b) as an inferred, unnamed structure that separates 

coastal Sonora from Isla Tiburón. This structure continues towards the northwest and may 
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possibly trend into other northwest-striking structures beneath the Gulf of California (Fig. 4). 

Although the Infernillo fault is completely submerged by ocean waters, it is inferred as a 

vertical structure that may continue onshore beneath Quaternary-age alluvial deposits near 

Punta Chueca (Gastil and Krummenacher, 1977a; Fig. 4). Oskin and Stock (2003a) made the 

observation that outcrops of Ttsf and Ttmc are restricted to the northern portion of eastern Isla 

Tiburón, and suggested that 20 ± 10 km of dextral displacement and/or northwest-directed 

extension across the intervening channel is required to restore these outcrops to similar 

outcrops just east of Punta Chueca. Together, the Sacrificio, Bahía Kino, and Infernillo faults 

comprise a NW-trending shear zone in which the entire study area is contained. This shear 

zone will be referred to as the Kino-Chueca Shear Zone. 

Punta Blanca Fault 

 The Punta Blanca fault is a NE-striking structure in the south-central study area (Plate 

1, Fig. 6). Map-view outcrop patterns suggest that the Punta Blanca fault has ~1.5 km of 

apparent sinistral displacement of the base of Ttsf. The Punta Blanca fault is inferred to be a 

moderate- to high-angle sinistral-oblique normal fault, though its dip and the slip direction 

has not been resolved from kinematic data. If a dip angle of 75° towards to northwest is 

assumed for the Punta Blanca fault, variable amounts of slip are calculated for the various 

possible slip directions of the Cabra block hanging wall: 1.5 km of slip for pure strike-slip 

motion, 1.7 km of slip for oblique-slip motion (rake of 045°), and 5.6 km of slip for pure 

normal motion. Map views restorations of fault blocks (discussed in the Discussion section 

below) predict 1 -2 km of sinistral displacement along the Punta Blanca fault. The Bahía 

Kino fault likely truncates the Punta Blanca fault at its northeastern end, while at its 

52



 

southwestern end it may merge with the normal(?) Guadalupe fault. These fault intersection 

relationships are not exposed. 

Aeropuerto Fault 

 The Aeropuerto fault in the southeastern study area is an inferred normal fault that is 

concealed beneath the delta plain of the Rio Sonora (Plate 1, Fig. 6). Normal displacement on 

the Aeropuerto fault tilted the Rancho Nuevo, Granito, and Cerro Kino blocks down to the 

east. Both branches of the Bahía Kino fault probably truncate and offset the Aeropuerto fault. 

Offset along the Aeropuerto fault cannot be determined because no bedrock outcrops are 

exposed in the foot wall that would match the well exposed rocks of the Cerro Kino block. 

Additionally, the location of the Aeropuerto fault is very poorly constrained and it could lie 

well southeast of the southeastern corner of the study area. 

Eco Fault 

 The Eco fault in the east-central portion of the study area is a moderate angle (45-55°) 

normal fault that juxtaposes group four rocks in the Eco and Luna blocks in the hanging wall 

against basement rocks in the Rancho Nuevo and Granito blocks in the foot wall (Plate 1, 

Fig. 6). Total normal displacement on the Eco fault is estimated at 3.0 km, which includes 

~0.2 km of displacement on an imbricate fault exposed 1 km northwest of and sub-parallel to 

the Eco fault. This estimate is poorly constrained, as it is measured on the normal 

displacement of the base of Ttsf from the Eco block to the Puerto Rico block, across the 

Puerto Rico fault that may have many kilometers of strike-slip displacement. Additional 

smaller-scale normal faults within the hanging wall of the Eco fault also contribute to the 

dilation of this portion of the study area. Both branches of the Bahía Kino fault have 
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subsequently truncated and offset the Eco fault, providing some relative age constraints for 

extensional and dextral fault systems in the central study area. The Guadalupe fault may be a 

dextrally offset, southwestern continuation of the Eco fault. However, these fault intersection 

relationships are not exposed. 

Guadalupe Fault 

 The Guadalupe fault is a NE-striking structure in the south-central study area (Plate 1, 

Fig. 6). Because the Guadalupe fault is entirely unexposed, its dip angle and relative age with 

respect to intersecting faults (e.g. western branch Bahía Kino fault, Punta Blanca fault, 

Infernillo fault) is difficult to assess. Rocks in the hanging wall of the Guadalupe fault (San 

Miguel block) show 1.2 km of apparent sinistral displacement relative to rocks in the foot 

wall (Cabra block). This displacement could be the result of pure dip-slip, oblique-sinistral 

slip, or pure sinistral strike-slip and cannot be readily resolved from the lack of fault 

exposures. If a dip angle of 50° towards to northwest is assumed for the Guadalupe fault, 

variable amounts of slip are calculated for the various possible slip directions of the San 

Miguel block hanging wall: 1.2 km of slip for pure sinistral strike-slip motion, 1.4 km of slip 

for sinistral oblique-slip motion (rake of 045°), and 6.8 km of slip for pure normal motion. 

The Guadalupe fault is inferred to be a sinistral-oblique normal fault. The Bahía Kino fault 

likely truncates the Guadalupe fault at its northeastern end, where it may continue as the Eco 

fault. At its southwestern end it may merge with the sinistral-oblique normal Punta Blanca 

fault. 
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Tordillo Fault 

 The Tordillo fault in the north-central portion of the study area is a moderate angle 

(~45°) normal fault that juxtaposes Cerro Tordillo block group two and three rocks in the 

hanging wall against Eco block basement rocks in the foot wall (Plate 1, Fig. 6). After 

reconstruction of the base of Ttsf in the Eco and Cerro Tordillo blocks, total normal 

displacement on the Tordillo fault is estimated at 2.2 km. The southwestern end of the 

Tordillo fault may be a transfer structure and appears to either be truncated by or merges with 

the Bahía Kino fault (Plate 1). Outcrops in the area of this intersection are either buried or 

within homogeneous tonalite, obscuring the nature of this fault intersection. 

Punta Chueca Fault 

 The Punta Chueca fault in the northwestern portion of the study area is an undulatory 

low-angle normal fault with a general west-directed sense of hanging wall motion. Along its 

trace, Punta Chueca block group two, three, and four hanging wall rocks are juxtaposed 

against San Miguel and Cerro Tordillo block crystalline foot wall rocks. Locally where well 

exposed, the Punta Chueca fault consists of shallow (~5°) portions that dip towards the west 

and shallow (~10°) back-tilted portions that dip towards the southeast (Plate 1). The Punta 

Chueca fault varies from a N-striking structure in the north to a NE-striking structure along 

its southwestern portions. This southwestern portion of the Punta Chueca fault may be a 

transfer structure that either merges with or truncates the Bahía Kino fault. The offset of 

intrusive basement contacts in the Cerro Tordillo block are used to constrain the location of 

the base of Ttsf in the footwall of the Punta Chueca fault, and total normal offset, measured 

from the base of Ttsf in the hanging wall of the Punta Chueca fault, is estimated at 5.2 km. 
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FAULT KINEMATICS 

Methods 

 Structural observations and fault kinematic data were collected from fault planes of a 

variety of scales where preserved fault-slip indicators (slickenlines or mullions) were 

observed. These kinematic features represent the direction of relative motion between the 

adjacent bocks on either side of the measured fault surface. A total of 132 fault-slip 

indicators were measured on small-offset fault plane surfaces throughout the study area 

within all non-Quaternary map units. Each fault-slip measurement consists of the strike/dip 

of the fault plane, rake of fault slip indicator, and sense of shear. Where a reliable shear sense 

indicator was absent, a shear sense direction was systematically assigned to each fault 

kinematic datum. To do so, the general assumption that these slickenlines formed under 

extensional stress was implemented. Following this assumption, slickenline data with a 

significant dip-slip component (slickenline rake from ~20 - 160°) were assigned a shear 

sense with a component of normal slip (e.g. either a dextral-oblique normal or sinistral-

oblique normal shear sense). Slickenline data with a less-significant dip-slip component 

(slickenline rake from 0 - ~20° and ~160 - 180°) were assigned a shear sense that reflected 

either dextral motion for NW-striking faults or sinistral motion for NE-striking faults. 

Analysis 

 For this kinematic analysis, slickenlines are assumed to form in the direction of the 

maximum resolved shear stress on a fault plane (Wallace, 1951; Bott, 1959). Thus, the paleo-

stress direction on that fault is a component of the orientation of the fault slickenline or 
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mullion datum. Together these data should cumulatively be representative of paleo-stress 

conditions.  

 Variable amounts of clockwise vertical-axis rotation of fault blocks have occurred 

across the study area (discussed in the following Paleomagnetism section). Therefore, prior 

to analysis, all fault kinematic data were rotated counter-clockwise about a vertical-axis by 

the amount of rotation either determined or predicted by the paleomagnetic results of this 

study (up to 53°). Principal paleo-stress axes were then determined using FaultKin v.4.3.5 

software (Allmendinger et al., 2009), which utilizes the right dihedra geometrical method of 

Angelier and Mechler (1977) and Pfiffner and Burkhard (1987). Using the well-dated 

stratigraphy as a chronologic filter, various periods of time were compared for similar or 

dissimilar paleo-stress vector orientations. 

Results  

 Fault kinematic indicators measured in pre-12.5 Ma rocks (n=89) are generally 

ignored in this analysis, as they are likely overprinted by and reflect multiple deformational 

episodes of paleo-stress (e.g. subduction-related shortening, subduction-related back-arc 

extension, rift-related extension and shear, etc.; Fig. 12B). Fault kinematic indicators 

measured in 12.5 - 0 Ma rocks (n=43) reflect all Gulf of California deformation, and display 

WSW-directed extension (T-axis azimuth 254°) with a near-vertical σ1 principal stress 

vector (Fig. 12C). The well-dated stratigraphy in the study area (Fig. 5) allow for further 

analysis and division of these Gulf of California fault kinematic into subsets of proto-Gulf 

rocks. Fault kinematic indicators (n=20) in early proto-Gulf rocks (12.5 to 11.5 Ma), which 

integrate all subsequent Gulf deformation, display a SW-NE extension direction (T-axis 

azimuth 232°) with a near-vertical σ1 principal stress vector (Fig. 12D). In latest proto-Gulf 
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rocks (6.6 to 6.0 Ma), fault kinematic indicators (n=23) suggest an approximate E-W-

extension direction (T-axis azimuth 263°) with a near-vertical σ1 principal stress vector (Fig. 

12E).  

 Although the paleo-stress results from the fault kinematic dataset appear to 

distinguish two distinctly different extension directions for early proto-Gulf and latest proto-

Gulf time periods, the stability of these results is not strong. Confidence contours for P- and 

T-axes for each analysis reflect the low precision of these results (Fig. 12 B,C,D,E). This low 

precision is indicated by the overlap of contours for P- and T-axes that should theoretically 

be 90° apart from each other. It also appears that due to the small size of the post-12.5 Ma 

data set (n=43), the results are quite sensitive to the addition of new data. As this study 

progressed over three annual field seasons, fault kinematic data were progressively collected, 

and at the end of each field season all fault kinematic data collected up until that point were 

analyzed in the fashion explained above. The results changed from each subsequent year as 

more data were collected. For example, one iteration of analysis increased proto-Gulf data 

from n=16 to n=20, which resulted in a 26° difference in the T-axis azimuth orientation. 

Additionally, this kinematic dataset lacks much data from the well-timed 6.4 Ma Tuffs of 

Mesa Cuadrada due to poor preservation of slickenlines in a nonwelded tuff. Another 

drawback of this dataset, and possibly the largest one, is that a large portion of proto-Gulf 

time and all of modern-Gulf time is not preserved in the rock column within the study area 

(no rocks are present from ~11.5 - 7 Ma and post-6 Ma). Therefore, the kinematic data may 

not represent the tectonic style during a large portion of proto-Gulf time, and may only be 

overprinted by modern-Gulf deformation. Therefore, overall, these results should be taken 

with some level of reservation. 
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Figure 12.   (A) Cartoon of expected fault kinematic results of rift-related 
structures for both end-member hypothesis. Note that proto-Gulf-age rocks should 
not only record proto-Gulf tectonics, but also be overprinted by younger modern-
Gulf tectonics (possibly via fault reactivation). For rows B-E, kinematic data is 
sorted by known age of lithologic units. Columns display (left) measured faults and 
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(blue), and (right) fault plane solution. All analysis conducted with FaultKin 
software (Allmendinger et al., 2001). (B) Faults measured in pre-12.5 Ma rocks 
are not relevant to this study, since they may reflect multiple episodes of stress 
(e.g. subduction-related shortening, subduction-related back-arc extension, 
rift-related extension and shear, etc.). (C) rift-related fault kinematic data suggest 
heterogeneous stress is recorded in rocks that post-date 12.5 Ma. For 12.5 - 11.5 
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direction (T-axis = 232˚). (E) Kinematic data from latest proto-Gulf rocks display an 
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PALEOMAGNETISM 

Field and Laboratory Methods 

 Either Ttmc or Ttsf was sampled for paleomagnetic analysis at seven sites between the 

towns of Bahía de Kino and Punta Chueca in coastal Sonora. Additionally, Ttsf was sampled 

at three sites in north-central Baja California to establish a new stable reference site (Fig. 13, 

Table 2). The isotopic ages determined for Ttmc (6.39 ± 0.02 Ma) and Ttsf (12.50 ± 0.08 Ma) 

indicate that these tuffs likely erupted during normal subchron C3An.2n (6.269 - 6.567 Ma) 

and reverse subchron C5Ar.2r (12.401 - 12.678 Ma) respectively (Cande and Kent, 1995). 

 206 samples (cores) were collected from these ten paleomagnetic drill sites, and 1-cm 

tall specimens were prepared from these samples for demagnetization experiments. Samples 

were oriented in the field using both a magnetic compass and a sun compass, to an accuracy 

of ±1°.	  A strict paleomagnetic sampling campaign has been implemented that consistently 

attempts to sample a high number of randomly oriented samples per paleomagnetic site (n > 

10, typically n ≈ 20) in order to improve the 1/sq-root statistics for each paleomagnetic site 

and to therefore reduce the error in calculated rotation values. Areas prone to secondary 

magnetization from lightning strikes were also avoided for paleomagnetic sampling, such as 

topographic promontories (e.g. summit of Cerro Kino, where outcrops of Ttsf are currently 

strongly magnetized to azimuth 302°). 

 The natural remanent magnetization (NRM) of a specimen is typically the sum vector 

of at least two components: a primary component acquired during rock formation, and a 

secondary component acquired after rock formation and prior to analysis in the laboratory 

(Butler, 1992). Partial demagnetization experiments identify the presence of and remove any  
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secondary, low-stability component from the NRM. During progressive demagnetization 

steps, alternating-field (AF) demagnetization procedures (Butler, 1992) gradually remove the 

low-stability component, and the remaining isolated vector is assumed to represent the high-

stability, primary NRM that is representative of Earth’s magnetic field at the time the 

sampled rock cooled below the Curie temperature. Because ignimbrites cool much faster than 

significant changes in the secular variation of Earth’s magnetic field, the NRM directions 

determined from multiple specimens collected from the same ignimbrite cooling unit should 

agree within uncertainty (Lewis and Stock, 1998). 

Once the NRM and low-temperature (LT) steps were conducted, all specimens from 

all samples collected from each of the paleomagnetic sites were subjected to this progressive 

AF demagnetization procedure, typically including 13 steps to a magnetic field strength of 

800 millitesla (mT). All experiments were conducted using an automated 2G Enterprises 

superconducting rock magnetometer in a magnetically shielded µ-metal room at the 

Paleomagnetics Laboratory of the California Institute of Technology, as described by 

Kirschvink et al. (2008). No thermal demagnetization steps were performed. 

Analysis 

 Raw paleomagnetic data were analyzed using PaleoMag v3.1b1 (Jones, 2002) to 

estimate the directions of lines and planes of best least-squares fit for demagnetization paths 

for each specimen, following on the technique of Kirschvink (1980). Typically, directions 

resolved from higher AF steps were utilized to obtain best-fit lines, while NRM, LT, and low 

AF steps displayed anomalous directions, indicative of variable magnitudes of a secondary 

NRM component (Fig. 13). 
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Results 

New Reference Site for the Tuff of San Felipe 

 In central Baja California, a new high-precision paleomagnetic reference vector for 

Ttsf has been measured (Bennett and Oskin, 2008). This new reference location is west of 

both the main Gulf topographic escarpment and the San Pedro Martír fault that marks the 

western edge of the Gulf Extensional Province (Fig. 4). Because this reference location has 

remained tectonically stable since the eruption and deposition of Ttsf, the paleomagnetic 

vector measured here is a good estimate of the magnetic field at the time Ttsf cooled below 

the Curie temperature. Representative examples of paleomagnetic measurements from this 

new central Baja California paleomagnetic reference site(s) are shown in Figures 13A 

through 13C, and their relative declination and inclination anomalies are summarized in 

Table 2. 1:20,000-scale and 1:50,000-scale geologic mapping was conducted in the Baja 

California study area (Fig. 14) and three mesas capped by Ttsf were selected for 

paleomagnetic sampling: Mesa El Pinole (MEP) 20 km northwest of El Metate (Fig. 14C), 

Mesa El Burro (MEB) 1 km south of El Metate (Fig. 14D), and Mesa El Cartabón (MEC) 9 

km southwest of El Metate (Fig. 14E). These mesas are capped by 10-30 m of the Tuff of 

San Felipe and are amongst the most western exposures of this ignimbrite documented in 

Baja California. Evidence for two cooling units within Ttsf exists in the northern and 

northeastern portions of this study area. In the area of these mesas, Ttsf was deposited on a 

generally flat landscape with minor paleo-topography incised into a 15 - 110 m-thick section 

of sedimentary rocks. These Oligo-Miocene strata (Dorsey and Burns, 1994) 

nonconformably overlie a variety of plutonic and metamorphic basement rocks. Locally, Ttsf 

infills westward-draining paleo-drainages carved into the near-horizontally dipping  
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underlying conglomerates (Fig. 14B). 

 64 randomly oriented core samples were drilled in Ttsf at these three mesas, including 

19 samples from MEC, 27 samples from MEB, and 18 samples from MEP (Table 2). At 

MEC, samples were drilled from the lower cooling unit of Ttsf, and at MEB and MEP, 

samples were drilled from the upper cooling unit of Ttsf. At each paleomagnetic site, samples 

were collected in two or three clusters spaced from 10 to 600 meters apart, permitting partial 

exclusion of data from a paleomagnetic site if one cluster appeared to be overprinted (e.g. by 

a lightning strike). The majority of samples from these three mesas appear to lack any 

significant magnetic overprint and primary remanent magnetization directions were 

successfully extracted from these samples (Fig. 13A-C). However, at MEB, 14 of the 27 

samples were sampled near the western tip of a protruding mesa-top; the remaining 13 

samples were collected ~600 m to the east at the same elevation but within a protected 

drainage. These 14 western samples were discarded from the analysis for anomalous 

directions likely due to lightning strike at the sampling location. Of the remaining 13 cores, 

11 appear to retain their Miocene direction and were included in the analysis. These 16 

samples from MEB are the only samples discarded prior to calculation of the mean 

paleomagnetic vector for Ttsf. 

 48 of these 64 samples together yield a mean direction of 212.4° declination, -3.0° 

inclination with an α-95 confidence of 1.3° (Fig. 14F, Table 2). This direction lies well off of 

the expected Miocene paleo-pole position (Fig. 14F) and records an apparent geomagnetic 

excursion during reversed polarity subchron C5Ar.2r (Stock et al., 1999). This unique 

magnetic signature only strengthens the utility of the Tuff of San Felipe as a regional tectonic 

marker. The declination measured at these mesas is ~6° counter-clockwise of the Mesa 

Cuadrada Ttsf reference site in the Sierra San Felipe (Lewis and Stock, 1998), indicating that 
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at the previous Ttsf paleomagnetic reference site a minor amount of clockwise vertical-axis 

rotation has occurred since 12.5 Ma. Therefore, clockwise vertical-axis rotation values for all 

previously published Ttsf paleomagnetic sites from both margins of the Gulf of California are 

updated here and further discussed later (Fig. 15; Table 3).  

Deformed Sites in Coastal Sonora 

 Data from paleomagnetic remanence directions measured on pyroclastic flows in 

coastal Sonora indicate vertical-axis rotations range from ~15° counter-clockwise to ~53° 

clockwise relative to their respective reference locations in stable Baja California. 

Representative examples of paleomagnetic measurements from these coastal Sonora 

paleomagnetic sites are shown in Figures 13D through 13J, and their relative declination and 

inclination anomalies are summarized in Table 2. For all Ttsf paleomagnetic sites, rotation 

values are calculated with respect to the new reference site of this study (Bennett and Oskin, 

2008). For all Ttmc paleomagnetic sites, rotation values are calculated with respect to the 

Tmr3b unit of Lewis and Stock (1998) from Mesa Cuadrada in northeastern Baja California. 

Additionally, a correction of +4.6° has been applied to all published rotation values for Ttsf 

from Oskin et al. (2001). 

 At the Punta Chueca (PC) paleomagnetic site in the Punta Chueca block (Fig. 13D), 

Ttmc displays a clockwise vertical-axis rotation of 46.1° ± 11.7°. Ttsf, previously sampled in 

this fault block by Oskin et al. (2001), displays a vertical-axis rotation of 52.8° ± 2.1°. At the 

East Guadalupe (EG) paleomagnetic site in the Guadalupe block, a magnetic vector direction 

was unable to be determined for Ttmc (Fig. 13E), while Ttsf displays a clockwise vertical-

axis rotation of -1.0° ± 7.7° (Fig. 13F). A secondary chemical overprint of the primary 

magnetic vector direction of Ttmc at EG is likely to be the cause of the inconclusive results 
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from this site. At the La Luna (LL) paleomagnetic site in the Luna block, Ttmc (Fig. 13G) 

and Ttsf (Fig. 13H) display clockwise vertical-axis rotations of -15.5° ± 11.8° and 9.9° ± 

1.9°, respectively. At the Guadalupe Shrine (GS) paleomagnetic site in the Guadalupe block, 

Ttmc (Fig. 13I) displays ~40° of clockwise vertical-axis rotation with at least 70° of error. 

Due to only partial removal of a shallow WNW-oriented secondary NRM component, both 

the direction of the primary NRM component and the relative rotation value for Ttmc at GS 

have low precision, ± 28.5° and at least 70°, respectively (Fig. 13I), and this rotation value is 

not reliable. Also at this site, Ttsf (Fig. 13J) displays a clockwise vertical-axis rotation of 0.8° 

± 8.0°. Ttsf in the Cerro Kino fault block, previously sampled at the Bahía Kino (BK) 

paleomagnetic site by Oskin et al. (2001), displays a vertical-axis rotation of 35.5° ± 3.3°. 

Ttmc is not exposed in the Cerro Kino fault block. 

DISCUSSION 

 The results from detailed geologic mapping, geochronology, paleomagnetism, and 

fault kinematic analysis begin to suggest a tectonic history in the study area of a rapid, single 

transtensional stage with progressive localization of strike-slip faulting. Palinspastic 

reconstructions of both cross section and map view help to further clarify the tectonic 

evolution of the Kino-Chueca Shear Zone since Middle Miocene time. The results from these 

restorations help to constrain the timing, direction, and magnitude of both extensional and 

strike-slip faulting within the study area related to the opening of the Gulf of California. 

Extensional Faulting in Coastal Sonora 

 Evidence for extensional faulting is observed throughout all pre-Quaternary map units 

within the study area. Generally, two distinct styles of extensional faulting are observed: (1) a 
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larger magnitude extension style that was WSW-directed on NNW-striking normal faults, 

expressed present-day by low- to high-angle N- to NNE-striking normal faults that have been 

variably rotated in a clockwise direction, and (2) a smaller magnitude extension style 

expressed present day by high-angle N-S-striking and WNW-striking normal faults. Paleo-

horizontal datums of Ttmc and Ttsf are exploited to assist cross-section restoration of fault 

blocks back to 6.4 and 12.5 Ma, respectively (Fig. 16). 

 The larger-magnitude style of WSW-directed faulting consists of normal faults with 

dips that range from very low (<5°), to moderate (~60°), to high (~90°) angles. Pre-extension 

hanging wall rocks are tilted down to the east up to 90°. These relationships produce greater 

than 90° hanging wall cutoff angles, which is the angle measured between tilted hanging wall 

rocks and the normal fault surface, down towards the normal fault. Typically, both the 

steepest plausible normal fault dip (90°) and the more likely normal fault dip (60°) produce 

hanging wall cutoff angles ≤90°. Therefore, the observed >90° hanging wall cutoff angles are 

impossible to palinspastically restore with one generation of normal faults, and require that a 

more complex multi-phase extensional history has acted to tilt these rocks to such steep 

angles (e.g. Proffett, 1977). In this multi-stage model for extended continental crust, first-

generation normal faults slip and rotate to low angle. As this first fault generation becomes 

less mechanically favorable to slip (Anderson, 1942; Proffett, 1977; Forsyth, 1992; Buck, 

1993), new second-generation faults initiate, allowing for continued continental extension. 

These younger second-generation faults may sole into older first-generation faults that 

continue to slip at moderate to low angles (e.g. Brady et al., 2000).  
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Timing of Extensional Faulting 

Stratigraphic Constraints 

 Block tilting and basin deposition prior to the eruptions of both the 6.4 Ma Tuffs of 

Mesa Cuadrada and the 6.5 Ma Tuff of Cerro Tordillo constrain the timing of the earliest 

activity on these extensional fault systems. Thus, Tcl is an exceptionally important lithologic 

unit to this study, in that it helps to date the earliest presence of tectonic basins related to the 

Gulf of California rift in the study area.  

 In order to quantitatively determine the timing of this earliest extension, conglomerate 

sedimentation rates, constrained by isotopically-dated interbedded tuffs, are extrapolated to 

resolve earliest basin formation and deposition. In the Punta Chueca block, the 6.39 ± 0.02 

Ma Tuffs of Mesa Cuadrada is 166 m above the 6.53 ± 0.18 Ma Tuff of Cerro Tordillo, 

yielding a sedimentation rate of 1.2 ± 0.2 mm/yr for Tcl (Dorsey et al., 2008). When this Tcl 

sedimentation rate is applied to the ~50 m of Tcl below the Tuff of Cerro Tordillo that is 

exposed at the surface, the timing of basin initiation, accommodation, and sediment 

deposition in coastal Sonora is estimated at ca. 6.6 Ma. This is a minimum age estimate for 

basin initiation because there is presumably thicker Tcl deposits in the Punta Chueca basin at 

depth than the ~50 m exposed at the surface. 

 Slip on the Punta Chueca fault is interpreted to have created the tectonic 

accommodation for these basin conglomerates and tuffs. This dip-slip occurred coeval with 

deposition and is demonstrated by: (1) fanning dip sections in the hanging wall of large-scale 

normal faults (e.g. Punta Chueca and Eco faults), and (2) growth strata thickening towards 

the faults (e.g. Punta Chueca fault) (Plate 1, Fig. 16). Additional evidence for syn-tectonic 

deposition of Tcl, Ttmc, and Tcu is that the upper and lower contacts of Ttmc are either both 

84



 

disconformities above an actively tilting hanging wall (Punta Chueca block), or both angular 

unconformities, suggesting tilting began prior to and was ongoing after 6.4 Ma. Extensional 

faulting likely terminated coeval with or shortly after the end of conglomerate deposition, 

because the youngest conglomerate deposits are relatively undeformed (dipping <5°). 

Structural Constraints 

 Relative amounts of tilting of pre- and syn-rift strata can also constrain the timing of 

the earliest activity on these extensional fault systems. In order to quantitatively determine 

the timing of this earliest extension, the relative structural tilt of isotopically-dated tuffs 

interbedded within extensional basins are evaluated.  

 In the Punta Chueca block, the 6.39 ± 0.02 Ma Tuffs of Mesa Cuadrada is inclined 

34°, while the stratigraphically lower 6.53 ± 0.18 Ma Tuff of Cerro Tordillo is inclined 50°. 

This yields a rapid tilting rate of 0.11°/kyr for the intervening Tcl deposits. When this tilting 

rate is extrapolated to the >50 m Tcl deposits that underlie the Tuff of Cerro Tordillo and 

overlie the 71°-inclined Tuff of San Felipe, the timing of basin initiation, accommodation, 

and sediment deposition in coastal Sonora is estimated at ca. 6.7 Ma. Because this tilting rate 

is rather high, a more conservative age of 7 Ma is assigned to initiation of extensional 

deformation determined from structural inclinations. 

 When this conglomerate deposition rate and tilting rate are forward projected to the 

thickest exposures of Tcu (~225 m in the Punta Chueca block), cessation of conglomerate 

deposition and extensional faulting is estimated at ca. 6.2 Ma. This is a maximum estimate 

because Tcu deposits likely exceed 225 m and are not completely observed due to the likely 

erosion of the upper portions of these youngest deposits. Therefore, a more conservative 

estimate of 6 Ma is assigned to cessation of extensional deformation in coastal Sonora. 
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Direction of Extensional Faulting 

 The direction of extension for a normal fault can be constrained from the structural 

strike of the tilted units within its hanging wall. This assumes that typical orthogonal 

extension ingrains a structural strike into tilted strata that is 90° clockwise from the direction 

of tectonic transport (right-hand rule). Vertical-axis block rotations will alter these results. 

Thus, any subsequent block rotation associated with strike-slip motion must be corrected for 

prior to this analysis. 

 After first grouping the structural strike of the 12.5 Ma Tuff of San Felipe by fault 

blocks, a dominant pattern of approximate NNW- to NNE-oriented strike ridges is observed 

across the study area (gray arrows, Fig. 17). Next, variable amounts of clockwise vertical-

axis rotations determined by the paleomagnetic results of this study were removed from the 

average structural strike in four fault blocks (Punta Chueca, Guadalupe, Luna, and Cerro 

Kino blocks). As a result, a consistent pre-rotation strike direction of azimuth ~334° is 

determined (red arrows, Fig. 17). Thus, a WSW orthogonal extension direction of azimuth 

~244° is assumed to have tilted these fault blocks down to the ENE along NNW-striking 

west-dipping normal faults (blue arrows, Fig. 17). This extension direction corroborates well 

with published extension directions throughout the Gulf Extensional Province (Henry, 1989; 

Stewart et al., 1998). 

 When this technique is applied to basin fill deposits (e.g. Tcl, Ttmc, Tcu), a broadly 

similar extensional direction emerges (Fig. 17). This result indicates that the WSW extension 

direction remained broadly constant from the inception of extensional basins and throughout 

the duration of basin activity. One notable exception is within the Guadalupe block, where 

basin fill were tilted down to the east via WNW-directed extension, not by WSW-directed 
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extension (Fig. 17). Because this block underwent 0° of rotation (Fig. 15 and 17; Table 2), 

this extension direction more likely reflects a local structural complexity between the two 

branches of the Bahía Kino fault. 

 Paleocurrent data collected from conglomerate deposits within these three coastal 

Sonora basins (Dorsey et al., 2008) have been corrected for the paleomagnetic rotations 

determined from this study (Fig. 10). These corrected paleocurrents data reveal a consistent 

south-draining direction. These results are broadly consistent with an extensional model in 

which the WSW- and WNW-directed extension forms axial drainages that are approximately 

N-S-oriented. Thus, a southerly paleo-flow direction within these normal fault-controlled 

axial drainages would drain towards the extensional depression of the nascent Gulf of 

California. 

 A later stage of WNW- or NW-directed extension may have further deformed the 

northwestern-most portion of the study area. The NE-striking portion of the Punta Chueca 

fault in the southwestern Punta Chueca block was likely the transfer (i.e. transform) portion 

of the early history of the Punta Chueca fault while it was accommodating WSW-directed 

extension. Multiple lines of evidence suggest that this portion may have later become a zone 

of WNW-directed extension: (1) An isolated package of undifferentiated conglomerate 

(Tcun) in the Punta Chueca block displays a consistent southeast dip direction. This dip 

direction suggests deposition during NW-directed extension and tilting along the 

southwestern portion of the Punta Chueca fault. This uncharacteristic orientation of these 

basin conglomerates may also indicate their relative age is younger than Tcu, being deposited 

while the Punta Chueca fault continued to slip as it rotated, (2) In the northern study area, a 

general WNW-ESE tectonic transport direction of a similar rock package is apparent across 

the Eco, Cerro Tordillo, and Punta Chueca blocks (Plate 1, Fig. 16E). This packages consists 
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of (1) crystalline basement (Kt and Kgr) and the wall rocks they intrude (Pz), (2) 

undifferentiated andesite (Taun), (3) volcaniclastic deposits (Tvs), (4) all three cooling units 

of the Tuff of San Felipe (Ttsf1, Ttsf2, and Ttsf3), and (5) basin fill (Tcl, Ttmc, and Tcu) 

(Plate 1, Fig. 16), (3) Slickenline orientations measured on the Punta Chueca fault reflect dip-

slip and sinistral oblique-normal slip, (4) For the Punta Chueca fault, a relative greater 

amount of basement rocks are exhumed in the San Miguel block foot wall (~6 km in map 

view), compared to the ~4.5 km (map view) of basement exhumed in the Cerro Tordillo 

block foot wall. 

Magnitude of Extensional Faulting 

 Estimates of the magnitudes of slip on extensional faults are calculated from 

restoration of cross section ‘A’ (Fig. 16; Plate 1). Along this line of section, total dip-slip 

displacements on significant normal faults since 12.5 Ma are as follows: Eco fault (3.0 km), 

Tordillo fault (2.2 km), and Punta Chueca fault (5.2 km). Dip-slip displacements on these 

faults since 6.4 Ma are: Eco fault (3.0 km), Tordillo fault (2.2 km), and Punta Chueca fault 

(3.8 km). Although restoration of cross section ‘A’ infers structures beyond the boundaries of 

the study area and at depth, estimates of % extension are calculated only from data collected 

within the study area, along the line of cross section ‘A’. From these measurements, 11% 

extension occurred across the northern study area between 12.5 and 6.4 Ma. Extrapolation of 

sedimentation rates in the Punta Chueca basin suggests this extension began ca. 7 Ma, and 

thus likely occurred over ~0.6 Ma. This earlier extension is assumed to have occurred on the 

Punta Chueca fault because restoration of cross section ‘A’ requires the Tordillo and Eco 

faults to be a set of later stage faults, rooting into a deeper inferred detachment fault (Fig. 

16). Total extension since 12.5 Ma is estimated at 75%. This estimate accounts for extension 
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on the Punta Chueca, Tordillo, and Eco faults and two minor imbricate structures discussed 

above. 

 Generally, patterns emerge from Tcu clast count data (Dorsey et al., 2008) that 

support a depositional model where local sources, which reflect nearby lithologic units, were 

actively being tilted and exposed due to extensional faulting (Fig. 10). Specific examples 

supporting this depositional model include: (1) Kgr, Pzms, Pzcb, and Pzig clasts decrease to 

the south where these units are not present, and (2) Ta2 clasts increase to the south where the 

thickest sections of andesite are present. This depositional model suggests that small-scale 

(~2 km wide) extensional basins focused axial flow within relatively small (~10 - 20 km2), 

disconnected, tectonically-controlled drainage basins with local sources. No evidence 

suggests far-traveled exotic clast compositions that would support larger-scale, connected 

extensional basins. 

 In summary, extension directions determined from the structure and paleomagnetism 

of coastal Sonora basins reveal a consistent WSW direction of extension across the study 

area as blocks were rotated. These basins were actively extending from ~7 to 6 Ma and 

accommodated a total of 10.4 km of dip-slip displacement along discrete normal faults that 

caused 4.5 km and 75% of extension across the northern part of the study area since 12.5 Ma, 

and likely during the period from 7 - 6 Ma. Approximately half of this displacement occurred 

on the Punta Chueca fault, which appears to have been an active structure throughout the 

extensional history of the study area, likely accommodating extensional strain at moderate to 

low angles prior to becoming inactive. These estimates of percent extension are 

approximately double the estimate of 36% made by Oskin (2002) along an almost identical 

transect. However, this previous transect included one more extensional basin towards the 

northwest, beyond the study area. Additionally, these estimates of percent extension along 
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cross section ‘A’ fall within the range of theoretical estimates of extension along listric faults 

with the observed hanging wall cutoff angles (Wernicke and Burchfiel, 1982).  

 The Punta Chueca fault may represent one example of a major, low-angle, moderate-

offset, detachment fault that facilitated strain localization along the nascent margins of the 

northern Gulf of California. Structural and paleomagnetic data from the study area suggest 

that the Punta Chueca fault was an active WSW-extending structure by 7 Ma and likely 

rotated clockwise and evolved into a NW-directed low-angle structure by ca. 6 Ma. The 

Punta Chueca fault may be an earlier example of the large-magnitude extension proposed to 

have opened the Upper Tiburón basin (González-Fernández et al., 2005) shortly after 6.1 Ma 

(Oskin et al., 2001; Oskin and Stock, 2003a). 

Dextral Faulting in Coastal Sonora 

 Evidence for dextral and conjugate sinistral faulting is observed throughout all pre-

Quaternary map units and is associated with dextral shear across the Kino-Chueca Shear 

Zone. Extensional basins in the central and southern study area are cut by sub-vertical NW-

striking dextral faults, conjugate NNE-striking sinistral faults, and high-angle N-striking 

normal faults (Plate 1, Fig. 6). Generally, NW-striking dextral structures display larger 

displacements than their conjugate NNE-striking sinistral counterparts. Additional evidence 

for dextral deformation includes clockwise vertical-axis rotations of fault blocks determined 

from the paleomagnetic results of this study (Fig. 15, Table 2), and originally NNW-striking 

normal faults that have been rotated to a present-day N to NE strike (Fig. 17). 
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Timing of Dextral Faulting 

Stratigraphic and Structural Constraints 

 Displacement of multiple geochronologically constrained stratigraphic features 

constrain the timing of the earliest activity on these strike-slip fault systems, including:  

(1) The base of the syn-extensional basins (Tcl, Tmc, or Tcu on 11.5 Ma or older rocks) 

displays both dextral and sinistral offsets. This feature is a time-transgressive angular 

unconformity that grades laterally into a disconformity, with an estimated age range of 7 to 6 

Ma from stratigraphic constraints. No direct evidence exists for active dextral faulting during 

deposition of the ~11.5 Ma packages of rocks that overlie the Tuff of San Felipe, therefore, a 

very conservative maximum age of 11.5 Ma is assigned to earliest dextral faulting in the 

central study area. However, the minor clockwise block rotation (10°) of the Luna block and 

the observation that the majority of (if not all) dextral bedrock displacement post-dates the 

deposition of the 6.4 Ma Tuffs of Mesa Cuadrada, both indicate that any pre-6.4 Ma dextral 

motion was minor and likely occurred immediately prior to 6.4 Ma, rather than immediately 

following 11.5 Ma.  

(2) Where the Luna and Eco blocks are juxtaposed in the central study area, 1.25 km 

apparent dextral offsets are measured on both the base of group two (Taun) and base of group 

four (Tcu) rocks across the eastern branch of the fault (Plate 1). Assuming little or no vertical 

displacement along this vertical strike-slip structure, these identical magnitude offsets of 

group two and group four rocks suggest that earliest strike-slip faulting here post-dates the 

age of the base of Tcu (6.4 Ma). 

(3)  In the Eco fault block, dextral faults consistently truncate and offset N-striking 

normal faults (Plate 1). These normal faults cut post-6.4 Ma conglomerates, and are therefore 
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constrained as post-6.4 Ma structures. Thus, these strike-slip faults must also post-date 6.4 

Ma. 

Paleomagnetic Constraints 

 Clockwise vertical-axis rotations of fault blocks are evidence for distributed dextral 

deformation (e.g. Lewis and Stock, 1998). In coastal Sonora, paleomagnetic results indicate 

that many fault blocks have undergone clockwise rotations (Fig. 15, Table 2) in response to 

the NW-directed oblique divergence between the Pacific and North America plates. 

 A paleomagnetic drilling campaign was designed to not only quantify block rotations 

due to dextral faulting, but to also attempt to determine the timing of earliest dextral faulting. 

Towards this goal, paleomagnetic sites were chosen within fault blocks where both the 12.5 

Ma Tuff of San Felipe and the 6.4 Ma Tuffs of Mesa Cuadrada were exposed (Fig. 17, Plate 

1). Rotation values for these tuffs could then be compared for an individual fault block. If 

rotations from both tuffs were similar, rotation and dextral deformation of that fault block is 

assumed to post-date the younger tuff. Alternatively, if the older tuff displayed larger 

amounts of rotation relative to the younger tuff, rotation and dextral deformation is assumed 

to have initiated prior to deposition of the younger tuff. A cartoon representation of these 

hypothesized results and their interpretations are summarized in Figure 18A. 

 At the Punta Chueca (PC) paleomagnetic site in the Punta Chueca block, Ttmc (this 

study, Fig. 13D) and Ttsf (Oskin et al., 2001) display clockwise vertical-axis rotations of 

46.1° ± 11.7° and 52.8° ± 2.1°, respectively. Because these values are indistinguishable 

within error, these correlated paleomagnetic sites are interpreted to be evidence that earliest 

distributed dextral deformation of the Punta Chueca block began after the deposition of the 

6.4 Ma Tuffs of Mesa Cuadrada (Fig. 18B). However, up to ~20° of this rotation could have 
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occurred prior to 6.4 Ma. At the La Luna (LL) paleomagnetic site in the Luna block, Ttmc 

(Fig. 13G) and Ttsf (Fig. 13H) display clockwise vertical-axis rotations of -15.5° ± 11.8° and 

9.9° ± 1.9°, respectively. Ttmc at LL is interpreted as rotated slightly counter-clockwise, and 

Ttsf at is interpreted as rotated moderately clockwise. These values and their error ranges do 

not overlap (Fig. 18C), which is evidence for minor clockwise rotation of the Luna block that 

pre-dates the eruption of the 6.4 Ma Tuffs of Mesa Cuadrada. At the Guadalupe Shrine (GS) 

paleomagnetic site in the Guadalupe block, Ttsf (Fig. 13J) displays a clockwise vertical-axis 

rotation of 0.8° ± 8.0°, while a reliable rotation estimate could not be determined for Ttmc 

(Fig. 13I, Table 2). Also in the Guadalupe block, at the East Guadalupe (EG) paleomagnetic 

site, no magnetic vector direction was determined for Ttmc (Fig. 13E), while Ttsf displays a 

clockwise vertical-axis rotation of -1.0° ± 7.7° (Fig. 13F). The results from both the GS and 

EG paleomagnetic sites suggest the Guadalupe block is not rotated. At the Bahía de Kino 

(BK) paleomagnetic site in the Cerro Kino block, Ttsf displays a clockwise vertical-axis 

rotation of 35.5° ± 3.3° (Oskin et al., 2001). This value is updated to the new reference site 

and also reflects a 4.6° correction (clockwise) made to the published rotation value. Because 

Ttmc is not exposed in Cerro Kino fault block, dextral deformation of the Cerro Kino can 

only be constrained to post-date 12.5 Ma, although it is likely that this dextral deformation 

began sometime between ca. 7 and 6 Ma, similar to remainder of the study area. 

 The relatively smaller fault blocks immediately adjacent to where the Bahía Kino 

fault branches interact with multiple normal faults display little to no clockwise vertical-axis 

rotation (0 - 10°). In contrast, fault blocks where this complex fault interaction in not present 

(e.g. Cerro Kino block) or where the Bahía Kino fault is not present (e.g. Punta Chueca 

block) display higher rotation values (≥35°). These small rotation values of small fault blocks 

may be the result of a local region of constriction adjacent to a zone of complex dextral and 
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Figure 18.   (A) Cartoon of expected paleomagnetic results for two tuff deposits erupted at the beginning and the end of proto-
Gulf time. The ‘Distributed Transtension’ model predicts greater rotation of older tuff deposits due to proto-Gulf dextral shearing. 
The ‘Strain Partitioning’ model predicts similar rotation values for these deposits. (B) Results from Punta Chueca (PC) 
paleomagnetic drill sites, where both the 12.5 Ma Tuff of San Felipe (Ttsf) and the 6.4 Ma Tuffs of Mesa Cuadrada (Ttmc) were 
sampled. At PC, both tuffs display similar magnitudes of clockwise vertical-axis rotation (within error) within the same fault block 
(inset). These results suggest that rotation in the Punta Chueca block due to dextral shearing likely post-dates the eruption of 
the 6.4 Ma Tuffs of Mesa Cuadrada. (C) Results from La Luna (LL) paleomagnetic drill sites, where both tuffs were again 
sampled. At LL, Ttsf displays ~10˚ of clockwise rotation, while Ttmc is essentially not rotated. Even when rotation errors (white 
error ellipses on inset) are considered, these tuffs in the Luna fault block do not display similar rotations. These results suggest 
that minor rotations due to dextral shearing may pre-date the eruption of the 6.4 Ma Tuffs of Mesa Cuadrada. The significant 
flattening of the measured paleomagnetic vector for Ttmc at LL (F=38˚) remains unresolved. However, the paleomagnetic 
samples from the Ttmc reference site at Mesa Cuadrada in Baja California may have also undergone minor rotation, similar to 
the Ttsf samples at Mesa Cuadrada. If this is the case, and the Ttmc reference site requires ~6˚ of correction, Ttmc at LL may 
only be rotated -9˚ ± 12˚. This would reduce the difference between Ttsf and Ttmc rotation values (including their errors) from 
~12˚ to ~6˚. A correction of this magnitude for the Ttmc reference site would only strengthen the similarity of paired paleomag-
netic sites (PC) in the Punta Chueca fault block. Further explorations for a new Ttmc paleomagnetic reference site in central 
Baja California, but beyond the limits of the Gulf Extensional Province, should be pursued to resolve this.
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normal fault interactions, allowing blocks to translate while preventing large amounts of 

rotation. 

 The results from the paired paleomagnetic drill sites from the Punta Chueca block and 

from the paired sites of the Luna block are inconsistent and suggest that earliest dextral shear 

accommodated by fault block rotation was not coincident across the study area. In the Punta 

Chueca block dextral shearing commenced following the 6.4 Ma eruption of Ttmc, while in 

Luna block, shearing and ~10º of clockwise rotation appears to have occurred after 12.5 Ma 

and ceased prior to 6.4 Ma. These results suggest that dextral shear may have been coeval 

with, rather than post-dating, orthogonal extension, and these transtensional stresses created 

the rift-related Punta Chueca, Eco, and Kino basins. 

 With a new paleomagnetic reference site for the Tuff of San Felipe, all published 

rotation values from this ignimbrite and their resulting interpretations require an update. 

Therefore, all published rotations from paleomagnetic site on both sides of the northern Gulf 

of California, including the Midriff Islands, are recalculated and summarized in Figure 15 

and Table 3. Specifically, interpretations from paleomagnetic results of the Tuff of San 

Felipe from northeastern Baja California require an update. These interpretations by Lewis 

and Stock (1998) estimated 23 km of shear and 7 km of extension in the direction of relative 

plate motion (315°) in the rotated region between the dextral Valle de San Felipe fault and a 

postulated, parallel offshore dextral fault. When the calculations of Lewis & Stock (1998) are 

reproduced using the new rotation values, 27 km of NNW-directed dextral shear and 7 km of 

ENE-directed extension is calculated to have occurred in the Sierra San Fermin, Baja 

California. This result increases the amount of distributed dextral shear via block rotation in 

northeastern Baja California by 4 km. Lewis and Stock (1998) determined that a statistically 
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insignificant amount of block rotation occurred from 12.5 - 6 Ma, and thus these updated 

values of shear and extension probably occurred largely during modern-Gulf time. 

 In summary, dextral faulting predominantly post-dates deposition of the 6.4 Ma Ttmc 

and a significant portion, if not all, of the overlying latest Miocene basin conglomerates 

(Tcu). Paleomagnetic evidence is also consistent with dextral shear via clockwise vertical-

axis rotation post-6.4 Ma in the northern study area, although up to 20° of this 53° rotation 

could pre-date 6.4 Ma within uncertainty. In the central study area, minor amounts of dextral 

deformation must pre-date 6.4 Ma, based on the greater clockwise rotation of Ttsf versus 

Ttmc. 

Direction of Dextral Faulting 

 Map pattern of dextral faults (Fig. 6, Plate 1) demonstrate the direction of dextral 

faulting related to Gulf opening. The general trends of dextral faults across the study area, 

including the large-scale Bahía Kino fault, are towards the northwest (azimuth 315° to 320°). 

These trends coincide well with azimuths measured from modern-Gulf dextral structures 

within the active rift basins (Fenby and Gastil, 1991), and also with, and are likely extensions 

of, offshore faults (e.g. De Mar fault) that are known to have been a component of Gulf 

opening (Fig. 4; Aragón-Arreola and Martín-Barajas, 2007). 

Magnitude of Dextral Faulting 

 Magnitudes of dextral faulting are calculated from map-view restorations of geologic 

structures (Plate 1). Across the Kino-Chueca Shear Zone, dextral faulting occurred on 

discrete dextral faults amongst a distributed zone of dextral shear that involved clockwise 

vertical-axis block rotations. 
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 Multiple strike-slip faults display evidence for dextral bedrock displacements. Dextral 

displacement across both branches of the Bahía Kino fault is at least 5.8 km, based on 

restoration of units between the Cerro Kino and Granito blocks. Temporal slip alternation 

between dextral and normal fault systems appears to add additional slip to the western branch 

of the Bahía Kino fault. Restoration of this extension (Fig. 19) to realign the northern end of 

the San Miguel-Cabra block with the southern end of the Granito block adds 2.2 km of 

additional dextral displacement. Therefore, the total slip estimate for the Bahía Kino fault 

zone is 7.0 km. Slip along the Bahía Kino fault likely diminishes to zero at its northwestern 

end where it intersects the Punta Chueca fault (Plate 1). Predictions from map view block 

restorations suggest that total displacement along the Puerto Rico fault may be up to 2.8 km. 

Therefore, between the Sacrificio and Infernillo faults (i.e. within the Kino-Chueca Shear 

Zone), 9.8 km of total discrete displacement is estimated.  

 In addition to dextral faulting within the Kino-Chueca Shear Zone, evidence also 

exists for dextral faulting along the faults that bound this shear zone. Total dextral 

displacement along the Infernillo fault is estimated at 20 ± 10 km, and is less than a few tens 

of kilometers for the Sacrificio fault (Oskin and Stock, 2003a). 

 In summary, dextral deformation across the Kino-Chueca Shear zone consists of both 

discrete dextral displacements and distributed dextral deformation via block rotation. From 

the study area, total maximum dextral displacement along faults within the Kino-Chueca 

Shear Zone is estimated to be 9.8 km. 

A Transtensional Model for the Kino-Chueca Shear Zone 

 Field observations and geochronology suggest that transtensional strain within the 

study area associated with activity across the Kino-Chueca Shear Zone initiated ca. 7 Ma. 
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Because stratigraphic and structural constraints suggest that the Bahía Kino fault became 

active after 6.4 Ma, strain likely evolved from extension-dominated transtension ca. 7 Ma, to 

shear-dominated transtension sometime after 6.4 Ma. That basin sedimentation appears to 

have ceased ca. 6 Ma further supports this transition from extension-dominated transtension 

to shear-dominated transtension, as basin-subsidence caused by extension gave way to crustal 

deformation in the form of strike-slip faults.  

 The much higher relative amount of clockwise rotation determined from 

paleomagnetism distinguishes the Punta Chueca block in the northern part of the study area 

from the remaining fault blocks to the south. This high rotation of the Punta Chueca block 

was likely caused due to the distributed dextral deformation between the Sacrificio and 

Infernillo faults, and the lack of intervening discrete dextral faults that would accommodate 

focused dextral shear. In contrast, in the central and southern portions of the study area, the 

Bahía Kino fault is a significant structure to accommodate dextral shear, therefore, reducing 

the need to distribute dextral deformation across these faults blocks in the form of clockwise 

vertical-axis block rotation. As a result, fault blocks in the central and southern area are 

rotated by smaller amounts. 

 Thus, a tectonic model of the gradual evolution of partitioned strain may be 

envisioned for the Kino-Chueca Shear Zone. In this model (Fig. 19), the NW-striking 

Sacrificio and Infernillo faults serve as the boundaries of an intervening zone of both discrete 

and distributed dextral deformation. For the duration of this model, the orientation and 

location of the Sacrificio fault remains fixed. Additionally, the location of the eastern 

rotational pivot point of the Rancho Nuevo fault block also remains fixed. The amounts and 

timing of extension determined from palinspastic reconstructions along the line of cross 

section ‘A’ (Fig. 16) constrain the separations of the Rancho Nuevo, Eco, Tordillo, and Punta 
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Chueca blocks. Initial block orientations are predicted from correcting the average structural 

strike of present-day fault blocks by the amount determined from the paleomagnetic results 

of this study (Fig. 18), and their sizes are approximated by projecting mapped exposures of 

strike ridges within these fault blocks to the model-bounding faults. 

 This model predicts rotation of four initial fault blocks (Fig. 19A). Each fault block 

consists of up to five smaller blocks defined by the present-day geology. The center lines of 

these blocks at the initial model step (T-0) represent the former locations of strike ridges of 

the Tuff of San Felipe, which are well documented (Plate 1). At T-0, these strike ridges are 

assumed to not yet be tilted, therefore, these blocks of horizontal tuff deposits are spaced out 

by their pre-extension bed lengths calculated from cross section ‘A’.  

 Due to the larger (i.e. longer strike direction length) of the southern fault blocks at T-

0, ~35% of the total clockwise block rotations operate to rotate the Infernillo fault clockwise, 

to a more northerly structural strike in model step T-1 (Fig. 19B). Thus the original sub-

parallel relationship of the Sacrificio and Infernillo faults is not preserved. WSW-directed 

extension with a minor component of dextral deformation dominates the initial rotational 

deformation of these fault blocks (Fig. 19B). At T-1, an incipient El Camino-Bahía Kino 

fault propagates northward, approximately at the former location of the Infernillo fault. This 

northward propagation of the incipient Bahía Kino fault system introduces a change in the 

style that dextral deformation is accommodated between the model-bounding faults. As the 

Bahía Kino fault propagates northward in model step T-2, areas that previously 

accommodated dextral deformation entirely in the form of clockwise block rotation, instead 

accommodate some of this deformation along discrete strike-slip structures (Fig. 19C). Also 

at T-2, the incipient East Bahía Kino and Puerto Rico dextral faults begin to propagate into 

the study area from the south. Generally, as rotation continues (Fig. 19 C,D), the extensional 
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component is progressively reduced as the dextral component increases. Thus, with time, 

extensional basins that formed between fault blocks are subsequently rotated, and eventually, 

some are cut by newly-formed strike-slip faults. In the final model step (T-3), the majority of 

dextral deformation occurs along discrete dextral faults in the southern and central study 

area, while in the northern study area this dextral deformation continues to be accommodated 

entirely via clockwise rotation of the Punta Chueca block and continued slip on the low-angle 

Punta Chueca fault (Fig. 19D, Fig. 16).  

 The model presented here predicts amounts of total shear and extension that vary 

slightly across the study area (Fig. 19E). These differences are a result of the dissimilar 

incipient fault block sizes and non-parallel model-bounding faults. At the end of the model, 

transtensional deformation is resolved into a shear component parallel to and an orthogonal 

extensional component perpendicular to 317°, the approximate PAC-NAM vector (Stock, 

2007). In the northern study area, the model predicts 8.4 km of extension towards azimuth 

227° and 10.2 km of shear towards azimuth 317°, together yielding 13.1 km of transtension 

towards azimuth 278° (Fig. 19E). In the southern study area, the model predicts 6.0 km of 

extension towards azimuth 227° and 14.5 km of shear towards azimuth 317°, together 

yielding 15.7 km of transtension towards azimuth 294°. These estimates are for the zone 

bound between the Sacrificio and Infernillo faults and do not account for discrete dextral 

deformation along these model-bounding structures.  

 The orientations of large-scale strike-slip structures within the study area (315-320°) 

agree well with PAC-NAM relative plate motion vectors (317°; Stock, 2007), however, the 

strain direction for the Kino-Chueca Shear Zone is towards 294°. This WSW direction 

indicates that, although this coastal Sonoran belt deformed in a transtensional style, only a 
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component of this deformation directly contributed to the overall 317°-directed PAC-NAM 

relative plate motion vector.  

 During proto-Gulf time, as much as 300 km of 310°-directed PAC-NAM relative 

plate motion is unaccounted for, distributed somewhere across the GEP (Fig. 3). 

Approximately 14.5 km of shear across the Kino-Chueca Shear Zone accounts for a portion 

of this missing proto-Gulf shear (Fig. 19E). Offset on the Sacrificio and Infernillo faults 

likely account for additional components of proto-Gulf shear. Proto-Gulf-age offsets across 

the Infernillo fault are limited to 20 ± 10 km from matching exposures of tuffs on Isla 

Tiburón. Slip on the Sacrificio fault is less well constrained. After restoration of the post-6.1 

Ma opening of the Upper Delfín basin (‘T’ on Figure 1; Oskin et al., 2001; Oskin and Stock, 

2003a), realignment of exposures of the pre-15 Ma fusulinid-clast bearing conglomerate (‘F’ 

on Figure 1; Bryant, 1986; Gastil and Krummenacher, 1977b) supports anywhere from zero 

to perhaps up to 100 km of additional strike-slip on the Sacrificio fault. Because little or no 

evidence exists for significant deformation prior to 12.5 Ma, what additional offset occurred 

on the Sacrificio fault most likely accrued entirely during proto-Gulf time. Thus it is possible 

that anywhere from 25-155 km of proto-Gulf shear may have occurred in coastal Sonora, 

together across the Sacrificio fault, Kino-Chueca Shear Zone, and the Infernillo fault. The 

upper estimate of 155 km would require approximately 3 Myr of plate motion. However, 

only 1 Myr of activity is recorded in the Kino-Chueca Shear Zone, which is more consistent 

with a shorter life span and less slip on the adjacent Sacrificio fault.  

Implications for Continental Rupture Mechanisms 

 Data from well-dated stratigraphy, detailed structural mapping, and paleomagnetic 

analysis of isotopically-dated regional ignimbrites reveal that transtension was initiated 
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within the Kino-Chueca Shear Zone during latest proto-Gulf time, approximately 1 Myr prior 

to lithospheric rupture of the northern Gulf of California. Throughout this period, 

transtension appears to have evolved from extension-dominated to shear-dominated 

transtension. Extensional strain rates likely grew within Kino-Chueca Shear Zone in response 

to initial transtensional rifting and WSW-directed extension. As transtension progressively 

evolved to a more shear-dominated transtension, the extensional strain rates likely 

accelerated in response to the amplified presence of transform faulting. By ca. 6 Ma, strike-

slip faults were well developed and embedded within a zone of rotating extensional fault 

systems. These results are consistent with a scenario in which elevated extensional strain 

rates may have acted to weaken the lithosphere. 

 The Kino-Chueca Shear Zone was probably not unique. Similar deformation was 

likely occurring elsewhere in the northern Gulf of California, acting as coeval zones of 

transtension just prior to lithospheric rupture. A strong candidate for another late proto-Gulf 

transtensional shear zone flanking the Kino-Chueca Shear Zone is the La Cruz fault that 

transects southwestern Isla Tiburón to the west of the study area (Fig. 4). Both of these zones 

of combined shear and extension probably acted together to accelerate strain rates and 

allowed for focused extensional strain. Conceivably, following at least 1 Myr of focused 

transtensional deformational along these shear zones, strain rates reached a level high enough 

to focus extensional strain at a location somewhere between these shear zones, and rupture of 

the lithosphere occurred along a N-striking normal fault system just offshore of the western 

edge of Isla Tiburón (Oskin and Stock, 2003a; González-Fernández et al., 2005) beginning 

ca. 6.1 Ma (Oskin et al., 2001; Oskin and Stock, 2003a). This zone of narrow rifting and 

rupture is bound on the northeast by the De Mar fault --the northwestern projection of the 

Kino-Chueca Shear Zone-- and on the southwest by the La Cruz fault and Tiburón transform 

108



 

(Fig. 4). These NW-trending shear zones appear to have operated like transform faults, 

similar to transform faults between oceanic rift segments, and connected the zone of rupture 

west of Isla Tiburón to other extensional regions further to the north and south. Thus, once 

extensional strain migrated from within the study area to the western side of Isla Tiburón ca. 

6 Ma, activity within the Kino-Chueca Shear Zone likely diminished or became inactive, 

broadly similar to how oceanic transforms become inactive when they cease to connect 

active spreading centers. 

 To place this into the perspective of the Gulf of California kinematic puzzle (Fig. 3), 

a significant portion of proto-Gulf dextral shear is still unaccounted for (Fig. 19F). The 

geological constraints from coastal Sonora suggest that transtensional strain occurred in 

coastal Sonora during latest proto-Gulf time, although the direction of this strain was WNW-

directed (Fig. 19E). Therefore, only a small component of proto-Gulf dextral shear parallel to 

PAC-NAM plate motion (~14.5 km) was located along the eastern margin of the Gulf of 

California rift at this latitude. An alternative location for proto-Gulf shear may include 

regions east of the study area now concealed by the modern delta plain of the Rio Sonora. 

Further examination of the distribution and timing of proto-Gulf basins, possibly from 

borehole data east of the study area, may shed light on missing proto-Gulf shear. Also, 

examination of the magnitude of dextral translation of pre-rift deposits (e.g. geographic 

extent of the Tuff of San Felipe ignimbrite deposit) will also help to determine if significant 

additional proto-Gulf shear existed within inland Sonora (Oskin and Stock, 2003a).  

CONCLUSIONS 

 This study documents a ~1 Myr period of relatively rapid, focused transtensional 

deformation in coastal Sonora preceding continental rupture in the Gulf of California. This 
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result in part addresses the unaccounted for history of the proto-Gulf (~12.5 - 6 Ma) dextral 

component of the PAC-NAM plate boundary motion. In coastal Sonora, stratigraphic and 

geochronologic data indicate that extensional basins, floored by the 12.5 Ma Tuff of San 

Felipe, began to open to the WSW ca. 7 Ma in response to the onset of transtensional 

deformation. These basins continued to subside and record deposits of the 6.4 Ma Tuffs of 

Mesa Cuadrada, and display up to 75% extension across the northern part of the study area. 

A new model for the Kino-Chueca Shear Zone demonstrates that transtension progressively 

evolved from extension-dominated to shear-dominated over a ~1 Myr interval. The majority 

of this interval was comprised of distributed dextral deformation via clockwise block 

rotations up to 53°. Paleomagnetic data from both 6.4 Ma and 12.5 Ma ignimbrites suggest 

that the majority of this rotation post-dates 6.4 Ma. The end of this interval integrated 

discrete dextral offset along NW-striking dextral faults in the south (e.g. the Bahía Kino 

fault), while in the north shear continued via clockwise vertical-axis rotation of fault blocks 

and slip on the low-angle Punta Chueca fault. Overall this fault accommodated a total of 5 to 

6 km of normal slip. A transtensional model for deformation across the Kino-Chueca Shear 

Zone resolves 15.7 km of transtensional deformation at an azimuth of 294° through a 

combination of block rotation and faulting. 14.5 km of shear deformation is resolved in the 

PAC-NAM relative plate motion direction (317°), and occurred over a span of ~1 Myr, from 

7 to 6 Ma. This deformation rate, ~1.5 cm/yr, represents a substantial fraction (~28%) of 

PAC-NAM plate motion during this period. 

 Focused transtension in the Kino-Chueca Shear Zone from 7 - 6 Ma may represent an 

acceleration of extensional strain rate in coastal Sonora. Such a co-location of extension and 

shear at lithospheric scale may have helped to focus deformation on the NW-striking De Mar 

fault, and possibly elsewhere, such as the La Cruz fault along southwestern Isla Tiburón. 
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This focused deformation was followed shortly by lithospheric rupture along intervening N-

striking extensional structures west of Isla Tiburón ca. 6 Ma. Hence, this study documents an 

early phase of westward migration of plate boundary strain. The timing for the onset of 

transtensional deformation in coastal Sonora agrees well with a model of progressive 

westward migration of plate boundary strain and related depocenters. In this model, ~1.5 

cm/yr of plate boundary strain initiated ca. 7 Ma in coastal Sonora and formed the Punta 

Chueca, Eco, and Kino basins. Subsequently at ca. 6 Ma, strain and related basin formation 

migrated westward to the Upper Tiburón basin (Oskin et al., 2001), and ultimately migrated 

to the Upper Delfín basin by 2 to 3 Ma (Fig. 4; Aragón-Arreola and Martín-Barajas, 2007). 

This westward migration ultimately formed an asymmetric rift geometry in the northern Gulf 

of California where the active rift axis today is located near the western edge of a ~300 km-

wide, mostly submerged extensional province. This is remarkably similar to observations of 

other, more mature rifted continental margins (Louden and Chian, 1999) and to model 

predictions of asymmetric continental break-up during rupture (Bassi, 1995; Huismans and 

Beaumont, 2003). 

 In summary, results from geologic mapping, geochronology, and paleomagnetism in 

coastal Sonora, support the hypothesis that incorporation of dextral shear into a broad region 

of extension may have been the catalyst for lithospheric rupture in the northern Gulf of 

California, and support the concept of a causal link between rift obliquity and the potential 

for lithospheric rupture. In the study area dextral shear progressively localized within a zone 

of transtension. This shear preceded localization of strain in the axis of the Gulf of California 

by at least 1 Myr, and represents the latest interval of proto-Gulf deformation. It remains 

uncertain whether earlier proto-Gulf dextral motion occurred east of the study area. If, as 

according to the ‘distributed transtension’ model, dextral shear occurred primarily within 
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Sonora, additional older dextral shear zones are predicted to lie east of the study area. 

Alternatively, the results of this study are also consistent with a ‘progressive localization’ 

model where shear deformation accelerated and focused along transtensional shear zones 

embedded within the broader Gulf Extensional Province during latest proto-Gulf time. 
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PLATE 1.   Geologic map of Coastal Sonora, Mexico, between Bahia Kino and Punta Chueca. 
Mapping by Scott Bennett (2007-2009).

See attached full-size map (Pocket/DVD).
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