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The Gulf of California rift has accommodated oblique divergence of the Pacific and North America plates in north-
westernMéxico sinceMiocene time. Due to its infancy, its rifted margins preserve a rare onshore record of early
continental break-up processes and an opportunity to investigate the role of rift obliquity in strain localization.
We map rift-related structures and syn-tectonic basins on southern Isla Tiburón, a proximal onshore exposure
of the rifted North America margin. We integrate analysis and geochronology of syn-tectonic sedimentary basins
and mapping of crosscutting relationships to characterize the style and timing of fault activity. On southern Isla
Tiburón, an early phase of extension initiated between ~19–17 Ma and ~12.2 Ma. Subsequently, these normal
faults and related basins were cut by the La Cruz strike-slip fault and buried by deposits of the La Cruz basin,
an elongate, fault-controlled trough coextensive with the La Cruz fault. Crosscutting relationships show that
the NW-striking La Cruz fault accrued 5 ± 2 km of dextral slip ~8–4 Ma. The La Cruz fault and parallel Tiburón
transform were kinematically linked to detachment faulting that accommodated latest Miocene to Pliocene
oblique opening of the offshore Upper Tiburón pull-apart basin. The onset of strike-slip faulting on Isla Tiburón
was synchronous with the ~8–6 Ma onset of transform faulting and basin formation along N1000 km of the
reconstructed Pacific-North America plate boundary. This transition coincides with the commencement of a
clockwise azimuthal shift in Pacific-North America relative plate motion that increased the obliquity of the
Gulf of California rift and formed the Gulf of California shear zone. The record from the proto-Gulf of California
illustrates how highly oblique rift geometries, where transform faults are kinematically linked to pull-apart
basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new
oceanic rift basins.
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1. Introduction

Continental rifts require focused strain to successfully rupture
continental lithosphere and form new ocean basins (Buck, 1991). Rift
localizationmay occur via a variety of processes, such as (1) lithospheric
necking (Buck, 1991; Lavier and Manatschal, 2006), (2) heating
and magmatism from asthenospheric upwelling (Kusznir and Park,
1987; Hopper and Buck, 1996; Buck et al., 1999), (3) formation of
large-offset, trans-lithospheric detachment faults (Tucholke et al.,
1998; Lavier and Manatschal, 2006), (4) thermal weakening beneath
thick rift sedimentation (Lavier and Steckler, 1997; Bialas and Buck,
2009), or (5) an increase in extensional strain rate (England, 1983;
epartment of Earth and Space
A 98195, USA.
Kusznir and Park, 1987; Bassi, 1995; Huismans and Beaumont, 2003).
Analog modeling studies (e.g. Bonini et al., 1997; Corti et al., 2001)
and fully three-dimensional numerical modeling (van Wijk, 2007;
Brune et al., 2012; Heine and Brune, 2014) of rifting indicates that the
degree of rift obliquity may also enhance localization. Highly oblique
rifts (a small angle between plate boundary and relative plate motion)
accommodate a significant component of deformation on transform
(strike-slip) structures (Withjack and Jamison, 1986), which tend to
remain more localized (Chester, 1995) than normal faults (Buck,
1991; Forsyth, 1992), andmay catalyze continental rupture along linked
pull-apart basins (van Wijk, 2007; Bennett, 2011).

Testing the role of obliquity in rift localization requires knowledge of
the spatio-temporal history of deformation, and particularly the timing
of transform fault formation and activity. Such records are readily
accessible in sedimentary basins formed along or adjacent to strike-
slip faults that preserve a signature of fault activity in their architecture,
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subsidence history, sediment provenance, and facies relationships
(Christie-Blick and Biddle, 1985; Ingersoll, 1988; Xie and Heller, 2009).

The nascent Gulf of California rift is an active oblique rift
(Lonsdale, 1989) where strain localization (Oskin et al., 2001;
Oskin and Stock, 2003b), marine basin formation (Oskin and Stock,
2003a; Bennett et al., 2015), and continental rupture (Lizarralde
et al., 2007; Martín-Barajas et al., 2013) have each recently occurred,
thereby preserving a fresh geologic record from which to investigate
the role of plate boundary obliquity in rift localization. The Gulf of
California rift has developed within the western part of the Mexican
Basin and Range Province, a diffuse continental extensional province
that initiated within the SierraMadre Occidental (Fig. 1 inset) during
Oligocene time (~25–30 Ma; Gans, 1997; Henry and Aranda Gomez,
1992; Gonzalez-Leon et al., 2010; Ferrari et al., 2013) and generally
expanded westward as the subduction-related volcanic arc migrated
westward (McDowell et al., 1997; Gans, 2006). With the southeast-
ward passing of the Rivera triple junction ca. 12.3 Ma (chron 5a of
Atwater and Stock, 1998), the plate tectonic setting evolved from
subduction and back-arc extension to a broad region of integrated
transtensional dextral shearing between the Pacific and North
America plates both east and west of the stable Baja California
microplate (Gans, 1997; Fletcher et al., 2007). This transtensional
strain was accommodated across a heterogeneous, incompletely
documented system of dextral, normal, and oblique-slip faults
kinematically linked to the southern San Andreas fault system in
southern California. During latest Miocene time, this diffuse defor-
mation began to coalesce into the Gulf of California shear zone
(Bennett and Oskin, 2014), a narrow NNW-trending belt of localized
strike-slip faulting, clockwise block rotation, and subsiding pull-
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apart basins that broadly coincided with early to middle Miocene
volcanism. By the end of the late Miocene (ca. 6 Ma), Pacific-North
America (PAC-NAM) plate motion had become largely (≥90%)
localized into the Gulf of California (Oskin et al., 2001; Oskin and
Stock, 2003b; Umhoefer, 2011).

Regional models for the post-12.3 Ma tectonic evolution of the PAC-
NAM plate boundary provide variable estimates for the onset, magni-
tude, and location of earliest dextral deformation. Early geologic studies
and global plate circuit models (Stock and Hodges, 1989; Atwater and
Stock, 1998) invoke little to no dextral faulting within the Gulf of Cali-
fornia region east of the Baja California microplate (Fig. 1 inset) prior
to ~6 Ma, a period loosely referred to as the proto-Gulf of California
(Karig and Jensky, 1972). In contrast, other tectonic models invoke
significant magnitudes (150–250 km) of dextral deformation within
the Gulf of California during the proto-Gulf time period (e.g. Gans,
1997; Fletcher et al., 2007; Seiler et al., 2010). Importantly, restorations
of correlative cross-Gulf Miocene ignimbrites (Fig. 1; Oskin et al., 2001;
Oskin and Stock, 2003b) require that the NW–SE dextral-oblique diver-
gence between themodern shorelines of the northern Gulf of California
occurred largely after ~6.4–6.1 Ma. Thus, any substantial pre-6 Ma dex-
tral deformation related to the PAC-NAM plate boundary may be pre-
served on the fringes of the modern Gulf of California basin, within
the rifted continental margins of eastern Baja California or western So-
nora and Sinaloa.

Recent studies of the rifted continentalmargins of theGulf of Califor-
nia (Fig. 1) document evidence of significant dextral deformation
during proto-Gulf time (Seiler et al., 2010; Bennett et al., 2013;
Herman, 2013; Bennett and Oskin, 2014). Timing constraints from
these flanking regions suggest that the majority of this dextral
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deformation and related basin formation post-dates ~8 Ma, a few mil-
lion years after the ~12.3 Ma plate tectonic reorganization that formed
the dextral-oblique PAC-NAM plate boundary at the latitude of the
Gulf of California (Stock and Molnar, 1988). Currently, it is not well un-
derstood if this apparent delay indicates an evolution to a more oblique
rifting phase, or alternatively, that dextral deformation during proto-
Gulf time was ubiquitous throughout the Mexican Basin and Range ex-
tensional province and remains to be fully documented. Consequently,
it is unclear what role dextral faulting may have played in focusing a
broad region of continental extension into a localized rift that led to
the formation of the Gulf of California ocean basin.

In this paper, we report the results of an integrated stratigraphic,
structural, and geochronologic study of the La Cruz strike-slip fault
zone and related sedimentary basins exposed on southern Isla Tiburón,
a large (1200 km2) island in the Gulf of California (Fig. 1) that consti-
tutes the outboard, exposed edge of the Sonora (North America) rifted
margin. We incorporate our results with previous findings from coastal
Sonora and the conjugate rift margin in northeastern Baja California to
synthesize the tectonic evolution of the northern Gulf of California,
and draw connections to similar activity documented in the Salton
Trough and southern Gulf of California. We document an early phase
of normal faulting and related extensional basin formation on southern
Isla Tiburón that initiated sometime after ~19–17 Ma and was active by
~12.2Ma. The La Cruz strike-slip fault crosscuts older normal faults and
related basin deposits. From constraining the age of syn-tectonic
deposits of the La Cruz basin, we find that the La Cruz fault became
active ~8–7Ma. Dextral strike-slip faulting and basin sediment accumu-
lation ceased by ~4 Ma. Latest Miocene onset of dextral-oblique strike-
slip faulting and related basin formation on southern Isla Tiburón is
regionally consistent with the onset of transtensional deformation
throughout the Gulf of California and Salton Trough. This supports the
contention that increasing obliquity of PAC-NAMplatemotion triggered
a regional-scale reorganization of faulting within the proto-Gulf of
California, leading to formation of major transform faults and develop-
ment of the Gulf of California shear zone, a belt of transrotational defor-
mation and basin formation within the western portion of the Mexican
Basin and Range Province. The development of focused transtensional
strain facilitated subsequent rift localization and formation of the Gulf
of California ocean basin.

2. Tectonic setting

2.1. Gulf of California

Formation of the Gulf of California occurred due to oblique-
divergent separation of the Pacific and North America plates
(Hamilton, 1961; Larson et al., 1968; Lonsdale, 1989; Fenby and Gastil,
1991), which initiated along the length of the Baja California peninsula
ca. 12.3 Ma (Fig. 1 inset; Atwater and Stock, 1998). Evidence for the
earliest dextral-oblique deformation east of Baja California is docu-
mented onshore across a broad zone of transtensional deformation,
now preserved as inactive faults and exhumed non-marine tectonic
basins within the continental margins of Baja California (Lewis and
Stock, 1998; Seiler et al., 2010) and Sonora (Bennett et al., 2013). A
marine embayment formed at the mouth of the Gulf of California ca.
8.5–8 Ma (Carreño, 1992; Molina-Cruz, 1994; McCloy et al., 1988) and
flooded northward to the central Gulf of California by ~7 Ma (Holt
et al., 2000; Miller and Lizarralde, 2013) through transtensional basins
related to oblique rifting (Skinner et al., 2012a).

By ~6.4–6.1 Ma, rifting became localized within the core of this
early-formed transtensional belt (Oskin et al., 2001; Oskin and Stock,
2003b). At ~6.3 Ma, coeval with localization of the plate boundary
(Oskin and Stock, 2003a), the Gulf of California seaway flooded north-
ward into the northern Gulf of California and the Salton Trough (e.g.
Escalona-Alcázar et al., 2001; Pacheco et al., 2006; Dorsey et al., 2011;
Bennett et al., 2015). Large marine depocenters, which contain thick
(N4 km) sequences of marine sediments (González-Fernández et al.,
2005; Pacheco et al., 2006), developed within a NNW-trending belt
of en echelon pull-apart basins, now located in the eastern part of the
modern-day Gulf of California (Fig. 1; Aragón-Arreola and Martín-
Barajas, 2007).

By late Pliocene time (~3.3–2.0 Ma), transtensional strain in the
northern Gulf of California migrated to the west (Aragón-Arreola and
Martín-Barajas, 2007), abandoning the eastern marine basins and
initiating new marine pull-apart basins (see also Lonsdale, 1989). This
westernmost system of transtensional structures remains as the
primary PAC-NAM plate boundary where modern-day oblique plate
motion is accommodated along a system of long, NW-striking, right-
stepping, en echelon, transform faults connected by short (≤50 km-
wide), NW–SE-extending, pull-apart basins. Oblique rift basins in the
southern Gulf of California have proceeded to seafloor spreading
(Fig. 1 inset; Larson et al., 1968; Lonsdale, 1989; Fenby and Gastil,
1991; Kluesner, 2011), while these pull-apart basins in the northern
Gulf of California and Salton Trough have formed new hybrid crust of
basalt and sediments (Fuis et al., 1984; Dorsey, 2010; Martín-Barajas
et al., 2013).

2.2. Sonora (North America) margin

In the northern Gulf of California, the largely submerged Sonora
continental margin serves as the western, rifted edge of North
America continental crust (Fig. 1). Here, detailed offshore seismic-
reflection studies (Mar-Hernández et al., 2012; Martín-Barajas et al.,
2013) demonstrate that the irregular edge of the margin is structurally
controlled by a system of NW-striking en echelon dextral-oblique trans-
form faults kinematically linked to major N-striking normal faults
(Fig. 1). These transform faults serve as the northeastern edges of
deep rhomboid-shaped marine pull-apart basins, which together
accommodated oblique plate boundary motion via NW–SE-directed
extension. These structures and basins form a right-stepping series of
NW–SE-elongate structural rift segments, including from NW to SE:
(1) Salton Trough–Altar, (2) Wagner-Consag–Adair-Tepoca, (3) Upper
Delfín–Upper Tiburón, and (4) Lower Delfín–Lower Tiburón–Yaqui rift
segments (Fig. 1).

The time-space history of tectonic activity in these pull-apart basins
indicates that the southeastern reaches of transform faults were likely
active during the early development of the Gulf of California rift
(Oskin and Stock, 2003b; Aragón-Arreola and Martín-Barajas, 2007).
At the latitude of Isla Tiburón, the Tiburón transform and De Mar fault
are NW-striking dextral-oblique faults that bound the Upper Delfín–
Upper Tiburón rift segment (Fig. 1; Mar-Hernández et al., 2012).
These structures appear to continue to the southeast onto Isla Tiburón
and within the Sonora continental margin (Gastil and Krummenacher,
1977a,b; Oskin, 2002; Aragón-Arreola et al., 2005). These transform
fault zones each exceeds multiple tens of kilometers, suggesting
they were significant, plate boundary-scale structures prior to rift
localization.

The offshore Tiburón transform fault and the La Cruz fault, a strike-
slip fault mapped parallel to the Tiburón transform across southern
Isla Tiburón, bound the southwestern edge of the Upper Delfín–Upper
Tiburón rift segment (Figs. 1 and 2; Gastil and Krummenacher, 1977a;
Lonsdale, 1989; Fenby and Gastil, 1991; Oskin, 2002; Oskin and Stock,
2003a,b; Bennett et al., 2015). Both faults continue offshore ~150 km
southeast of the island (Fenby and Gastil, 1991; Aragón-Arreola et al.,
2005). Although the Tiburón transform is the primary structure along
the southwestern edge of this rift segment, the La Cruz fault is consid-
ered to be a less significant, but related dextral fault (Oskin and Stock,
2003a,b). Thick sequences of middle Miocene volcanic rocks do not
appear to correlate across the La Cruz fault, suggesting large amounts
(≥28 km) of dextral and/or normal displacement (Oskin and Stock,
2003b). The oldest rocks known to correlate across the La Cruz fault
are late Miocene (6.4–6.0 Ma) marine deposits (Fig. 2), which display
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no more than 1 km of dextral displacement (Bennett et al., 2015). This
suggests that most of the fault activity on the La Cruz fault occurred
prior to rift localization at ca. 6 Ma. Thus, the La Cruz fault preserves a
detailed record of how strike-slip faulting developed and evolved
during the early stages of oblique rifting in northwestern México.

3. Methods

3.1. Geologic, structural, and stratigraphic mapping

Building upon reconnaissance work by Gastil and Krummenacher
(1977a) and Oskin (2002) (Fig. 2), we present geologic mapping
(Fig. 3) and analysis of the La Cruz dextral fault where it is exposed
across southern Isla Tiburón. This fault divides southern Isla Tiburón
into two structural domains: the Sauzal domain to the northeast, and
the La Cruz domain to the southwest (Fig. 2). We also document well-
exposed sedimentary basins (Fig. 4) that are adjacent and intimately
related to faulting and record fault-related subsidence and deformation.
Similar structural and stratigraphic examination of strike-slip basins in
southern California and northwestern México has been used to recon-
struct the history of transform motion across transpressional (e.g.
Crowell, 1974; Powell and Weldon, 1992) and transtensional (e.g.
Powell and Weldon, 1992; Axen and Fletcher, 1998; Martín-Barajas
et al., 2001; Pacheco et al., 2006) portions of the dextral PAC-NAM
plate boundary. Our structural measurements include brittle-fault
orientations and kinematic indicators such as fault striae preserved on
polished fault planes (see stereonets on Fig. 3).Mappingwas conducted
at 1:10,000-scale on 0.6 m-resolution, pan-sharpened Quickbird satel-
lite imagery with topographic contours derived from the 90-m Shuttle
Radar Topography Mission digital elevation model, similar to Bennett
et al. (2015).

3.2. Geochronology

We conducted U/Pb (zircon) and Ar/Ar (k-feldspar and volcanic
matrix) analysis on samples of volcanic units to provide age constraints
for faulting and related basin formation along the La Cruz fault. Dated
units include deformed volcanic units that underlie and are interbedded
within basin deposits, as well as undeformed volcanic units that cap
these basin deposits (Figs. 5–7; Tables 1–3). Samples consisted of
2–5 kg of fresh rock collected from representative, in-place outcrops
and were processed as described by Bennett et al. (2015). We incorpo-
rate our geochronologic results with all published ages across southern
Isla Tiburón (Fig. 8; Table 4).

4. Stratigraphy and geochronology

4.1. Pre-Cenozoic rocks

Pre-Cambrian to Cambrian basement rocks (Gastil andKrummenacher,
1977b) exposed on southern Isla Tiburón consist of metamorphic units
(e.g., slate, quartzite, and phyllite) that are observed only southwest of
the La Cruz fault and east of Arroyo Sauzal, including the adjacent
small islands of Isla Dátil and Isla Cholludo (Fig. 3). Plutonic rocks in-
trude these metamorphic units and consist entirely of tonalite and
related, typically felsic, dikes that are ~90–86 Ma (Niño-Estrada
et al., 2014). We observe tonalite in several La Cruz domain tilt
blocks and in one previously undocumented locality in the Sauzal
domain (Fig. 3). These plutonic rocks are similar in age and compo-
sition to Late Cretaceous (~90–80 Ma) plutonic rocks on northern
Isla Tiburón (Gastil and Krummenacher, 1977b; Schaaf et al., 1999;
Niño-Estrada et al., 2014) and along the adjacent Sonora coastline
(Gastil and Krummenacher, 1977b; Valencia-Moreno et al., 2003;
Ramos-Velázquez et al., 2008).

4.2. Early to Middle Miocene volcanic and sedimentary rocks

A thick sequence of volcanic and sedimentary rocks of early to
middle Miocene age nonconformably overlies basement and plutonic
rocks on southern Isla Tiburón (Figs. 3 and 4). These units are heteroge-
neous along strike and appear to be broadly concentrated into three
compositionally diverse volcanic sub-sequences that are interstratified
over large distances: basaltic units to the west, andesitic and dacitic
units to the north, and rhyolitic units to the southeast (Fig. 3). Previous
studies on southwestern Isla Tiburón document early to middle
Miocene volcanic and sedimentary units of different lithology and age
juxtaposed across the La Cruz fault (Gastil and Krummenacher, 1977a;
Neuhaus, 1989; Gastil et al., 1999; Oskin, 2002; Oskin and Stock,
2003a; Bennett et al., 2015), a pattern that persists along the entire
fault trace (Fig. 3; Gastil and Krummenacher, 1977a; this study). We
summarize this volcanic and sedimentary sequence spatially from
west to east, within both the La Cruz and Sauzal domains.

4.2.1. La Cruz domain
In the La Cruz domain from the western tip of the island to Hast

Hinamj (sometimes referred to as Cerro Colorado), the early to middle
Miocene sequence consists of red volcaniclastic sandstone (Tvsl), basalt
flows and breccias (Tb) (Fig. 9A), and lacustrine limestone (Tsr)
(Neuhaus, 1989; Gastil et al., 1999; Bennett et al., 2015; this study).
These are conformably overlain by additional basaltic- and dacitic-
andesite lava flows and breccias (Tba and Tda) (Fig. 3 and 10A). Most
volcanic units here range in age from 23–15 Ma (Fig. 3; Gastil and
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rummenacher, 1977b; Neuhaus, 1989; Gastil et al., 1999). Beneath
ast Hinamj and east towards the Arroyo Sauzal drainage, units consist
basalt flows and breccias (Tb) with occasional interbedded red
lcaniclastic sandstone (Tvsl) conformably overlain by an andesite
va flow (Tha) (Figs. 3 and 10B).
East of the Arroyo Sauzal drainage, the interbedded basalt (Tb) and

d volcaniclastic sandstone (Tvsl) persist at the base of the Miocene
ction. Gastil and Krummenacher (1977b) report a K\\Ar (whole
ck) age of 7.0 ± 0.3 Ma from a thick sequence of basalt just east of
rroyo Sauzal (Fig. 3). However, our detailed mapping indicates that
is sample location is among early Miocene basalt flows (Tb), suggest-
g that the samplewas eithermislocated on theirmap (correct location
likely ~1 km farther to the east-southeast) or the K–Ar age is errone-
usly young. Basal basalt flows (Tb) and volcaniclastic sandstone and
nglomerate (Tvsl) units gradually thin to the east where they are
nformably overlain by thick deposits of red volcaniclastic sandstone
vs). Farther to the east, in the footwall of the Hihitiij fault, the basal
salt flows (Tb) pinch out and this relatively younger red volcaniclastic
ndstone (Tvs) rests directly upon basement and plutonic rocks (Figs. 3
d 10D). Tvs is conformably overlain by another andesite flow (Ta1),

istinct in lithology and location from andesite units mapped to the
est.
East of Arroyo de La Cruz, units of this sequence include a
lcaniclastic breccia (Tvb) and volcaniclastic conglomerate (Tvc) local-
mapped near the southeastern corner of Isla Tiburón (Fig. 3). We
sign these units to the early to middle Miocene sequence, but these
nits are mapped only in fault contact with more widespread units
d thus their relative age is unknown.

2.2. Sauzal domain
In the Sauzal domain, northeast of the La Cruz fault, units from

is early to middle Miocene sequence exposed west of Hipat Mesa
nsist of interbedded monolithologic volcaniclastic breccia (Tbxv),
acite flows (Td), and dacitic breccia (Tbxd) and range in age from
9 to 11 Ma (Fig. 3; Smith et al., 1985; Neuhaus, 1989; Gastil et al.,
999; Oskin and Stock, 2003a; Bennett et al., 2015). Units from this
quence continue beneath and east of Hipat Mesa. Between Hipat
esa and the Sauzal fault, the oldest units in this sequence consist
monolithologic volcaniclastic breccia (Tbxv) conformably overlain

y laterally discontinuous dacite (Td) and andesite flows (Tah)
igs. 3, 10B, and E).
East of the Sauzal fault and towards Arroyo de La Cruz, units of

is sequence are notably distinct from those west of this structure.
ere, the oldest exposed units in this sequence consist of a thick
ack of andesite flows (Tha-r, Tha) with a rare, discontinuous rhyo-
te flow (Tr). These flows are conformably overlain by interbedded
eposits of red-gray, andesitic breccia and volcaniclastic sandstone
d conglomerate (Trb), basalt flows (Tb), additional andesite

ows (Tha-r, Tha), and stratified deposits of red volcaniclastic sand-
one and white lacustrine limestone (Tsr) (Figs. 3, 10C, D, and 10E).
e report a new 40Ar/39Ar (volcanic matrix, isochron) age of
0.68 ± 0.20 Ma from exposures of Tha b 1 km northeast of the La
ruz fault (Fig. 5A; Table 1).
East of Arroyo de La Cruz, units of this sequence consist of interbed-

ed dacite breccia (Tdb), andesite flows (Ta), and andesitic basalt flows
ab) (Fig. 3). We assign these units to the early to middle Miocene
quence, though their relative age is unknown due to younger
nglomerate and alluvial deposits that conceal their relationship with
nits to the west.

3. Latest(?) Middle Miocene volcanic and sedimentary rocks

On southern Isla Tiburón, a sequence of latest(?) middle Miocene
lcanic and sedimentary rocks overlies the early to middle Miocene
quence (Figs. 3 and 4). These units consist of non-marine sandstone
d conglomerate interstratified with an ash-flow tuff and discontinu-
s, thin ash beds. This relatively younger sequence occurs either con-
rmably overlying the older early to middle Miocene sequence, or
ove an angular unconformity that separates these two sequences.
e summarize this volcanic and sedimentary sequence spatially from
est to east, within both the La Cruz and Sauzal domains.

3.1. La Cruz domain
In the La Cruz domain, perched high beneath the peak of

ast Hinamj (Fig. 9A), units of this sequence overlie older earlyMiocene
salt (Tb) and volcaniclastic sandstone (Tvsl) above an angular uncon-
rmity (Figs. 3 and 10A). Here, these overlying units consist of non-
arine conglomerate (Tcg1) with up to ~45 m of an interbedded
h-flow tuff (Ttsf). Discontinuous white and yellow ash beds are in-
rcalated within conglomerate deposits immediately above Ttsf.
skin (2002) reports an 40Ar/39Ar (K-feldspar, total gas) age of
.58 ± 2.66 Ma from the lower of two cooling units in this tuff, a
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densely welded, crystal- and pumice-rich, ash-flow tuff, which he
called the tuffs of Cerro Colorado. We report a new 40Ar/39Ar (K-
feldspar, multiple crystals) age of 12.20 ± 0.05 Ma from the basa
vitrophyre of this same ash-flow tuff, ~1.5 km along strike to the
northwest (Fig. 6A; Table 2). Based on its broadly similar lithology
and age, we tentatively correlate this tuff with the tuff of San Felipe
(Stock et al., 1999), a regionally extensive tuff that blanketed
N4000 km2 of the Mexican Basin and Range, exposed in Baja Califor-
nia, on Isla Ángel de la Guarda, across western and northern Isla
Tiburón, and in coastal and central Sonora (see Stock et al. (2006)
and Bennett and Oskin (2014) for summary).

From Arroyo Sauzal to the southeastern corner of Isla Tiburón
(Fig. 3), units of this sequence appear to conformably overlie older
early to middle Miocene volcaniclastic sandstone (Tvs) (Figs. 9B, 10C
and 10D). The oldest unit of this sequence here is the tuff of Ensenada
de La Cruz (Tlc), a densely welded, crystal-rich, ash-flow tuff. Oskin
(2002) reports an 40Ar/39Ar (K-feldspar, total gas) age of 11.25 ±
1.98 Ma for Tlc exposures immediately west of Ensenada de la Cruz
(Fig. 3). We report a new 40Ar/39Ar (K-feldspar, multiple crystals)
age of 12.21 ± 0.09 Ma (Fig. 6B; Table 3) from the same strike-ridge
of Tlc, ~150 m to the northwest (Fig. 3). Tlc is conformably overlain by
a diverse volcanic sequence that consists of the N400 m-thick rhyolite
flows of Punta Amarillo (Trpa1, Trpa2, Trpa3) (Fig. 9C), interfingered
with a basaltic andesite unit up to 120 m thick (Tba), up to ~80 m
of stratified ash and pumice deposits (Tty), and a vesicular basalt
flow (Tty-b) (Figs. 10C and D). Approximately 2–3 km east of the Ar-
royo Sauzal delta (Fig. 3), up to ~40 m of non-marine conglomerate
(Tcg1) and an andesite flow up to 25 m-thick (Ta2), discontinuously
overlie deposits of the ~12.2 Ma tuff of Ensenada de La Cruz (Tlc) and
the upper flow unit of the rhyolite flows of Punta Amarillo (Trpa3)
The lowermost Tcg1 beds are conformable with the underlying
units (e.g. Tlc), both inclined 31–34° (Fig. 10C). Conglomerate and
sandstone beds within Tcg1 are gradually less inclined up-section
with the uppermost Tcg1 beds inclined 13–17°, similar to the basa
contact of the overlying basalt breccia of Alta Sauzal (Tbas), a vesicu-
lar basalt breccia deposit (Fig. 10C).
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3.2. Sauzal domain
In the Sauzal domain, betweenHipatMesa and the Sauzal fault, units
this sequence unconformably(?) overlie the gently tilted early to
iddle Miocene volcanic units (e.g. Tbxv, Td, Tah) (Figs. 3, 10B, and E).
TUFF OF SAN FELIPE (Tts

TUFF OF SAN FELIPE (Tt

TUFF OF ENSENADA DE LA CRU

A

B

C

. 6. 40Ar/39Ar geochronologic ages calculated for volcanic rocks on southwestern Isla Tiburón
tassium-feldspar crystals (left) and inverse-isotope correlation diagram (right) for samples of
lc). Crystals omitted from mean age calculation are gray hollow circles (left) and gray shaded e
ese overlying units consist of volcaniclastic conglomerate (Tcg1)
d several intercalated, discontinuous volcanic units, including a resis-
nt, brick-red, andesitic block and ash deposit (Tbar), basalt breccias
bxb), and a welded tuff that we correlate to the tuff of San Felipe
f) [La Cruz domain]

sf) [Sauzal domain]

Z (Tlc) [La Cruz domain]

. %40Ar*, K/Ca ratios, and ranked age plot of multiple, single-grain, total fusion ages on
(A and C) the tuff of San Felipe (Ttsf) and (B, D, and E) the tuff of Ensenada de La Cruz
llipses and crystal numbers (right). See Table 2 for analytical data.
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(Ttsf). Discontinuous, thin, white and yellow airfall ash beds are
intercalated within conglomerate deposits immediately above Tts
(Fig. 3). Here, northeast of the La Cruz fault, we report a new 40Ar
39Ar (K-feldspar, multiple crystals) age of 12.12 ± 0.08 Ma from expo
sures of Ttsf (Fig. 6C; Table 2). This age is ~400 ka younger than age
obtained from coastal Sonora (Bennett et al., 2013) and central Sonora
(Vidal-Solano et al., 2005), but it is consistent with our 12.20 ±
0.05 Ma age for Ttsf southwest of the La Cruz fault and with the range
of reported ages (12.7–12.0 Ma) for Ttsf in northeastern Baja California
(Stock et al., 2008). The true eruption age of the tuff of San Felipe i
not settled, andmay be biased by contamination from older xenocrystic
material liberated from rhyolite inclusions that were partially molten a
the time of eruption. Stock et al. (2008) suggest that ~12.3Mamay rep
resent themost probable age for the tuff of San Felipe. For thepurpose o
this study, we will use an age of ~12.2 Ma when referring to the tuff o
San Felipe, consistent with our 40Ar/39Ar ages from southern Isla
Tiburón.

East of the Sauzal fault and towards Arroyo de La Cruz, units of thi
sequence are only locally exposed and overlie older early Miocene
volcanic units (e.g. Thf-r, Thf, Trb, Tb, Tha) above an angular unconformi
ty (Figs. 3 and 10E). These overlying units consist of non-marine con
glomerate (Tcg1) interstratified with limited deposits of the tuff o
Ensenada de la Cruz (Tlc). In this area, we report two new 40Ar/39A
(K-feldspar, multiple crystals) ages for Tlc, 12.14 ± 0.08 Ma (Fig. 6D
Table 2) from Tlc exposures ~1.5 km northeast of the La Cruz faul
(Fig. 3) and 12.26± 0.07Ma (Fig. 6E; Table 2) from steeply titled Tlc ex
posures within the La Cruz fault zone (Fig. 3). Both ages are consisten
with our 12.21 ± 0.09 Ma isotopic age for Tlc southwest of the La Cruz
fault. East of Arroyo de La Cruz, units of this sequence are only exposed
at a small, isolated mesa-top of sub-horizontal non-marine conglomer
ate (Tcg1), capped by a 12–15m-thick densely welded tuff that overlie
early to middle Miocene volcanic rocks above an angular unconformity
(Fig. 3). From its lithology and stratigraphic position, we tentatively
correlate this isolated tuff exposure to the tuff of San Felipe (Ttsf).

4.4. Late Miocene–Pliocene La Cruz basin

Across southern Isla Tiburón, a sequence of volcanic and sedimenta
ry units of the La Cruz basin occur above an angular unconformity cu
across both the early to middle Miocene sequence and latest(?) middle
Miocene sequence. Outcrops of these La Cruz basin deposits are concen
trated along the La Cruz fault (Fig. 3) and consist of non-marine coarse
conglomerate and sandstone with intercalated and capping volcanic
rocks. We subdivide the sedimentary deposits into two units, Tcg2 and
Tcg3, which are progressively less deformed up-section. These deposits
with their interbedded volcanic rocks and angular unconformities tha
separate them, record the history of deformation along the La Cruz
strike-slip fault. The overall geometry of the La Cruz basin appears to
be controlled by an elongate structural depression (negative flowe
structure) formed by both vertical fault motion and block tilting down
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Fig. 7. 206Pb/238U Tera-Wasserburg concordia diagram (left) and ranked age plot (right) for multiple zircon crystals from samples of (A) an ash bed interbedded near the base of the La
Cruz basin (Tcg2), and (B) the tuffs of HipatMesa that cap the La Cruz basin. Zircon crystals omitted frommean age calculation are gray squares with gray, dashed error ellipses. Relatively
younger zircons have high uranium concentrations (open gray squares; Table 3) and are omitted from mean age due to possible lead loss. Relatively older zircons are omitted due to
potential inheritance. Black arrow indicates mean age on ranked age plot. See Table 3 for analytical data.
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wards the fault (Figs. 10B, C, and D). In contrast to the older units, La
ruz basin rocks typically are exposed continuously across and along
e La Cruz fault (Fig. 3).

4.1. Lower La Cruz basin
The lower portion of the La Cruz basin consists of a local basalt brec-

a and widespread deposits of non-marine conglomerate and sand-
one (Tcg2; Fig. 3). In the La Cruz domain ~3 km east of the Arroyo
uzal delta, the basin is locally floored by the vesicular basalt breccia
Alta Sauzal (Tbas), which overlies an angular unconformity cut across
der units (Figs. 3 and 10C). Tbas deposits are at least ~90 m thick but
pear to dramatically thin to b12 m thick across a north-striking nor-
al fault (Fig. 3). The extent of Tbas deposits appears to be restricted
~3 km along strike. We report a new 40Ar/39Ar (volcanic matrix,
ochron) age of 7.86 ± 0.33 Ma on a breccia clast sample collected
om this exposure of Tbas (Fig. 5B; Table 1). Deposits of Tcg2 overlie
as and older units in angular unconformable contact (Fig. 9D),
here Tcg2 strata are inclined up to 25° less steep than underlying
nits (Figs. 3, 10B, C, and D).Within the La Cruz fault zone ~2 km south-
st of Hipat Mesa, a white airfall tuff, up to 5 m thick, is intercalated
ith Tcg2 deposits just above its basal, angular unconformable contact
ith an early to middle Miocene andesite (Tha) (Figs. 3 and 10B). We
port a new U/Pb (zircon, multiple crystals) age of 6.87 ± 0.07 Ma
om a sample of this tuff (Fig. 7A; Table 3). Thus, the base of the La
ruz sedimentary basin is bracketed by these 7.86 ± 0.33 Ma and
.87 ± 0.07 Ma volcanic units. Tcg2 deposits are likely coeval with de-
rmed, marine strata of broadly similar age (~6.4–6.0 Ma) near the
ase of the southwest Isla Tiburón (SWIT) basin, northwest of Hipat
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Mesa (Bennett et al., 2015). Tcg2 of the La Cruz basin and basal marine
deposits of the SWIT basin are not in direct contact, and may have
been sourced from different drainage basins separated by a
paleotopographic high that consisted of early to middle Miocene volca
nic rock outcrops (e.g., Tbxv, Tbxd) at or just northwest of Hipat Mesa
(Fig. 3).
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4.4.2. Upper La Cruz basin
The uppermost La Cruz basin fill consists of relatively undeformed

sedimentary deposits (Tcg3) that straddle the La Cruz fault beneath
Hipat Mesa (Figs. 3, 10E, and F). Tcg3 overlies and buttresses agains
the northeastern margin of an undated andesitic-dacite volcano com
plex (Tdhh; Figs. 3 and 4) whose deposits form the prominent peak
Hast Hinamj (Fig. 10A). Non-marine deposits of Tcg3 continue to the
north and northeast beyond the map area, towards the Valle de
Tecomate (Fig. 2; Oskin, 2002). These Tcg3deposits also continue north
west of Hipat Mesa into the SWIT basin (Fig. 3), where they grade later
ally (down-dip) into a relatively undeformed Gilbert-type fan delta
system of 6–4 Ma marine foreset and bottom set deposits (Bennet
et al., 2015). Based upon the architecture of non-marine and marine
strata across southern Isla Tiburón, it appears that these SWIT basin
marine rocks were sourced from a fluvial system that flowed northwes
along the axis of La Cruz basin, straddling the La Cruz fault zone.

4.4.3. Basin-capping deposits
The La Cruz basin is capped by sub-horizontal deposits of the tuffs o

Hipat Mesa (Tthm) (Fig. 3) that form a prominent ~20 km2 volcanic ta
bleland (Fig. 9E,F). Deposits of Tthm consist of three, distinct, crystal
poor, ash and pumice units (Tthm1, Tthm2, Tthm3). Tthm deposits are
horizontal everywhere, except near the northeastern flank of Has
Hinamj (Fig. 9F), where ash and pumice beds are locally inclined up to
the west and onlap the toe of the andesitic-dacitic volcanic complex
(Tdhh) at Hast Hinamj (Fig. 3). The Hast Hinamj volcano may have
been the source of the tuffs of Hipat Mesa. We report a new U/Pb (zir
con, multiple crystals) age of 4.37 ± 0.08 Ma from a sample of thi
tuff (Fig. 7B; Table 3). This age is broadly similar to a ~ 3.5–4.1 Ma flat
lying rhyodacite flow observed at a similar capping stratigraphic posi
tion and topographic elevation at Hast Pitzcal (Cerro Starship), ~7 km
northwest of Hipat Mesa (Bennett et al., 2015). Our 4.37 ± 0.08 Ma
age for Tthm at Hipat Mesa is almost identical to the 4.34 ± 0.20 Ma
age for Tthm that Bennett et al. (2015) reported at thewestern shoreline
of Isla Tiburón, ~7.5 km northwest of Hipat Mesa (Fig. 3). No other de
posits are observed above these ~4.4–3.5 Ma capping volcanic units
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Fig. 9. Field photographs of southern Isla Tiburón. (A) Looking northeast at Hast Hinamj. Early to middle Miocene basalt flows (Tb) are overlain by the tuff of San Felipe (Ttsf), which is
interbedded among latest middle Miocene conglomerate (Tcg1) across an angular unconformity (dashed white line). Sequence is capped by a pre-4 Ma dacite volcanic complex
(Tdhh). Lava flows in Tb and map unit contacts are highlighted with dashed black lines. (B) Looking southeast along Caniip Hiyat (Punta Amarillo), a northeast-dipping tilt block of Tvs,
Tlc (~12.2 Ma), Tty, and Tba, capped by Trpa lava flows. See text, geologic map (Fig. 3), and cross sections (Fig. 10) for unit details. (C) Looking east at sea cliff of Caniip Hiyat (Punta
Amarillo), where banding (dashed black lines) in the rhyolite flows of Punta Amarillo (Trpa) indicates a southerly flow direction. (D) Looking northeast at shallowly dipping (~5–15°)
La Cruz basin conglomerate (Tcg2) in angular unconformable contact (dashed white line) above moderately dipping (~20–50°) middle Miocene volcaniclastic strata (Tvs). Bedding is
highlighted with dashed black lines. Geologist, circled, for scale. (E) Looking northwest (left) to east (right) from Hast Hinamj, down over the Hipat Mesa volcanic tableland.
(F) Looking northeast (left) to south (right) at Hipat Mesa and Hast Hinamj. Ash and pumice deposits (Tthm) become more inclined towards, and onlap onto, the dacite volcanic
complex (Tdhh) at Hast Hinamj.
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Thus, Tthm provides a minimum age constraint for deposition within
the La Cruz basin (and SWIT basin) on southern Isla Tiburón.

5. Faulting and folding

Numerous late Cenozoic structures deform rocks on southern Isla
Tiburón. The intensity of deformation and tilting is greatest within the
early to middle Miocene volcanic and sedimentary sequence (Fig. 3
stereonets), which is deformed by thrust faults and folds, normal faults
and strike-slip faults. La Cruz basin deposits (e.g. Tcg2), which overlie
older strata across a significant, widespread angular unconformity
display relatively less deformation (Fig. 3, map and stereonets), bury
older structures (Figs. 3 and 10), and are cut by structures related to
strike-slip faulting. The youngest La Cruz basin sedimentary deposit
(e.g. Tcg3) and basin-capping volcanic units (e.g. Tthm) display very
little to no deformation.

5.1. La Cruz fault

The La Cruz fault is a significant, NW-striking, sub-vertical, dextra
strike-slip fault zone that transects the entire width of southern Isla
Tiburón (Gastil and Krummenacher, 1977a), parallel to the offshore
dextral Tiburón transform fault (Figs. 1 and 2). All sub-parallel splay
of the La Cruz fault deform lateMiocene and oldermap units, commonly
juxtaposing early to middle Miocene volcanic and sedimentary unit
(e.g. Tha) against latest Miocene non-marine conglomerate (Tcg2
(Fig. 3). Small-offset brittle faults with sub-horizontal (strike-slip
slickenlines oriented parallel to strands of the La Cruz fault are observed
in all pre-Quaternary units (Fig. 3), including subtle deformation of the
capping tuffs of Hipat Mesa (Tthm). Several restraining bends and
restraining stepovers occur along the La Cruz fault, and correspond
with short-wavelength folds, subsidiary thrust faults, and local rotated
blocks. Northwest of Hipat Mesa, internal tuff stratigraphy within
Tthm is offset vertically ~2–4 m across the primary northwest-striking
branch of the La Cruz fault and the basal contact of the Tthm is vertically
offset a few tens of meters across a nearby northwest-dipping norma
fault. Adjacent faults and folds do not appear to deform the La Cruz fault

Although the La Cruz fault primarily is a sub-vertical dextral fault
evidence suggests the fault has accommodated significant down-to
the-northeast dip-slip motion. Relatively deeper structural levels are
exposed southwest of the fault where metamorphic and plutoni
rocks are common. In contrast, northeast of the fault in the Sauza
domain, plutonic rocks are exposed only in an isolated, fault-bounded
block in the southeastern portion of the island (Fig. 3). Fault juxtaposi
tion of disparate early to middle Miocene units across the La Cruz faul
thus is likely a result of both dextral strike-slip and normal dip-slip
motion. This vertical motion across the fault, along with its negative
flower structure, together caused the tectonic subsidence necessary
for formation of the elongate, syn-tectonic La Cruz and southwest Isla
Tiburón sedimentary basins.

5.2. Additional strike-slip faults

Additional strike-slip faults, both dextral and sinistral, deform rock
on southern Isla Tiburón. One notable example is an unnamed, NW
striking, sub-vertical (81°) dextral fault that cuts across the Punta Ama
rillo headland (Fig. 3). This fault is not observed in the prominent
~200 m-tall Hihitiij sea cliff and thus does not continue much more
than 1 km to the northwest. Total dextral offset on this fault is difficul
to assess, as we identified no piercing points, but is likely minimal be
cause similar middle Miocene volcanic units occur on both sides o
this structure. This structure accommodated ~300 m of down-to-the
southwest apparent dip-slip displacement (Fig. 10D), which could be
the result of dextral-oblique or dextral offset of dipping units. Sinistra
strike-slip faults are uncommon overall. Where observed northeast o
the La Cruz fault, sinistral faults are ENE-striking, and cut the early to
middle Miocene sequence of rocks at high angles to their undulatory
contacts. Northeast of the La Cruz fault, one well-exposed sinistra
fault dips moderately to the north-northwest (62°) and displays a
strong set of sub-horizontal slickenlines (rake of 013°). Displacemen
on this sinistral-oblique normal fault is minor, with ~160 m of sinistra
separation of the Trb-Tb contact (Fig. 3).

5.3. Sauzal fault

The Sauzal fault is a significant normal fault (Oskin, 2002; this study
in the Sauzal domain. The fault strikes NE–SW and dips moderately to
gently (~30–40°) to the northwest, and has a structurally related half
graben in its hanging wall (Figs. 3 and 10E). Hanging wall unit
consisting of middle Miocene non-marine conglomerate (Tcg1) and
the ~12.2 Ma tuff of San Felipe (Ttsf) are juxtaposed against footwal
units consisting of andesitic (Thf-r, Thf, Tha-r) and mafic (Tb) lava
flows of early to middle Miocene age. We estimate that the Sauza
fault has accommodated ~1.7 kmof dip-slip displacement bymeasuring
the positions of coeval, but not correlative, tuff deposits: the ~12.2 Ma
tuff of San Felipe in its hanging wall and the ~12.2 Ma tuff of Ensenada
de La Cruz in its footwall (Fig. 10E). However these unitsmay have been
emplaced at different paleo-elevations, and the offset could be slightly
more or less than 1.7 km. The Sauzal fault appears to be truncated by
the dextral La Cruz fault.

5.4. Colorado fault

The Colorado fault is a significant, previously unmapped norma
fault in the La Cruz domain (Fig. 3). It strikes NE–SWanddipsmoderate
ly to gently (~30–40°) to the northwest. Hanging wall units consisting
of earlyMiocene basalt (Tb) and Cretaceous tonalite (Kt) are juxtaposed
against Cretaceous tonalite (Kt) in the footwall (Fig. 10A). Similar to the
Sauzal fault, middle Miocene non-marine conglomerate (Tcg1) and the
~12.2 Ma tuff of San Felipe (Ttsf) are exposed in the hanging wall o
the Colorado fault, preserved within cliffs beneath the resistant daciti
volcano (Tdhh) at Hast Hinamj, ~3–4 km northwest the fault (Figs. 3
and 10A). We estimate that the Colorado fault has accommodated
~1.5 km of dip-slip displacement of the nonconformity between Mio
cene volcanic rocks and Cretaceous tonalite (Fig. 10A). However, this es
timate is loosely constrained due to limited exposure of the
nonconformity in the footwall block, where the correlative nonconfor
mity is at high angle to the fault. The hangingwall block is cut by severa
NNE- to NNW-striking secondary normal faults that structurally dupli
cate the nonconformity in a fanning fault pattern. These faults do no
cut the Colorado fault at the surface and likely merge with the Colorado
fault at depth (Fig. 10A). Similar to the Sauzal fault, the Colorado faul
appears to be truncated by the dextral La Cruz fault.

5.5. Hihitiij fault

The Hihitiij fault is a significant, previously unmapped normal faul
in the La Cruz domain (Fig. 3). It strikes N\\S and dips steeply (~70°
to the west. Hanging wall units consisting of early to middle Miocene
volcaniclastic sediments (Tvs), the tuff of Ensenada de La Cruz (Tlc)
and the rhyolite flows of Punta Amarillo (Trpa2,3) are juxtaposed
against metasedimentary rocks (Pzms) and Miocene volcaniclastic sed
iments (Tvs) in the footwall. We estimate that the Hihitiij fault accom
modated at least 1 km of dip-slip displacement based on offset of the
Miocene–Cretaceous nonconformity, which occurs ~1 km east of it
trace in the footwall and ~3 km west of its trace in the hanging wall
Total fault slip likely diminishes northward, where the Hihitiij fault jux
taposes the same rock unit (Tvs), possibly due to slip transfer to a cross
cutting, NW-striking dextral strike-slip fault with ~120 m of apparen
dextral displacement (Fig. 3). Farther along strike to the north, the
Hihitiij fault may either end at a fault tip or bend to the northwes
where it may accommodate dextral strike-slip motion. The timing o
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Cross sections across southern Isla Tiburón
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Fig. 10. (A-E) Geologic cross-sections for southern Isla Tiburón. Map unit lithologic indicators, colors, and other symbology as in Figs. 3 and 4. Dip values from structural measurements used to construct cross-sections shown near ground surface. Apparent dip values shown in parentheses. See geologic map (Fig. 3) for cross-section line locations. Printed cross-section sheet is 24″ tall, 72″ wide. Please see enlarged image at the end of the article.
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Table 1
40Ar/39Ar step-heating data for Isla Tiburón samples.

Step Temp. %39Ar Radiogenic 39Ark
40Ar* Apparent Apparent Apparent Error

of total  Yield (%) (moles x 10-12)
39Ark

K/Ca K/Cl Age (Ma) (Ma)

A 600 1.1 3.2 0.0373 0.627 1.24 28 5.38 ± 0.74

B 700 8.6 13.5 0.3066 1.006 1.78 43 8.63 ± 0.16

C 800 12.0 25.6 0.4259 0.992 0.78 52 8.51 ± 0.08

D 850 7.6 25.7 0.2722 0.969 0.37 61 8.32 ± 0.16

E 900 7.1 27.1 0.2532 1.109 0.24 72 9.51 ± 0.83

F 950 6.6 20.3 0.2336 1.028 0.21 67 8.82 ± 0.12

G 1000 6.6 13.9 0.2364 1.154 0.26 51 9.89 ± 0.10

H 1050 7.0 12.8 0.2490 1.249 0.28 46 10.71 ± 0.69

I 1100 3.5 11.0 0.1258 1.120 0.28 43 9.60 ± 0.48

J 1150 3.8 11.7 0.1360 1.201 0.23 41 10.30 ± 0.21

K 1200 3.1 11.5 0.1118 1.137 0.17 40 9.75 ± 0.28

L 1250 2.2 12.1 0.0780 1.119 0.10 40 9.60 ± 0.24

M 1350 16.2 11.5 0.5782 1.607 0.11 39 13.77 ± 0.14

N 1450 12.8 11.9 0.4554 1.627 0.11 42 13.94 ± 0.46

O 1650 1.7 11.2 0.0611 2.107 0.09 39 18.03 ± 1.74

Total Gas 100 16.4 3.5605 1.247 0.42 49 10.69

A 600 0.2 0.6 0.0047 5.064 0.86 12 42.54 ± 14.35

B 700 1.1 4.2 0.0248 2.252 1.04 48 19.04 ± 2.42

C 800 4.1 20.2 0.0958 1.633 0.87 175 13.83 ± 0.20

D 850 4.5 60.0 0.1050 2.432 0.71 447 20.55 ± 0.14

E 900 7.3 80.6 0.1701 2.546 0.72 1635 21.51 ± 0.07

F 950 18.9 89.1 0.4395 2.529 0.78 0 21.37 ± 0.05

G 1000 17.9 88.7 0.4168 2.461 0.76 0 20.80 ± 0.04

H 1050 15.5 84.8 0.3598 2.437 0.64 4371 20.60 ± 0.05

I 1100 9.7 75.1 0.2259 2.446 0.55 1176 20.67 ± 0.06

J 1150 6.4 61.0 0.1480 2.465 0.50 424 20.83 ± 0.09

K 1200 5.3 52.7 0.1238 2.460 0.56 217 20.79 ± 0.14

L 1250 3.8 46.8 0.0883 2.460 0.51 134 20.79 ± 0.16

M 1350 3.8 24.3 0.0893 2.701 0.31 40 22.81 ± 0.20

N 1450 0.7 5.2 0.0161 5.169 0.09 12 43.41 ± 3.36

O 1650 0.8 3.2 0.0187 7.451 0.08 11 62.25 ± 2.16

Total Gas 100 72.1 2.3266 2.406 0.66 983 20.34

Ages calculated assuming an initial40Ar/36Ar = 295.5± 0. 

All precision estimates are at the one sigma level of precision.

Ages of individual steps do not include error in the irradiation parameter J.

No error is calculated for the total gas age.

TIB-10-34      basalt matrix        J = 0.004767 ± 0.30%       wt = 276.2 mg      #282&283KD57

TIB-10-3     dacite-andesite matrix J = 0.004712 ± 0.30% #284&285KD57wt = 867.0 mg

°C
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activity on the Hihitiij fault is poorly known, but must post-date middle
Miocene time and pre-date the crosscutting strike-slip fault.

5.6. Additional normal faults and related folds

Additional normal faults with relatively less displacement deform
rocks throughout southern Isla Tiburón (Fig. 3), but are most abundant
in the La Cruz domain, between the La Cruz fault and the offshore
Tiburón transform fault. Here, N- to NNW-striking normal faults struc-
turally duplicate tilted blocks of early to middle Miocene volcanic and
sedimentary units (e.g. Tb, Tvs, Tlc, Trpa) and underlying basement
and plutonic units (e.g. Pzms, Kt) (Fig. 10A). These faults are moderately
to steeply west-dipping, although a few east-dipping, antithetic(?)
faults are also observed. This style of faulting is common near Ensenada
de las Cruces (Fig. 3), where dip-slip displacement ranges up to ~500m
(e.g. Fig. 10D). Late Miocene non-marine conglomerate deposits of the
La Cruz basin (Tcg2) bury and cap these normal faults.
Another common style of normal faultingwithin the La Cruz domain
is NE–SW-striking normal faults. Excluding secondary structures in the
hanging wall of the Colorado fault, this is the predominant style of
faulting west of Arroyo Sauzal, where these faults juxtapose early mid-
dleMiocene volcanic units (e.g. Tb) against plutonic rocks (Kt). Younger,
La Cruz basin deposits (e.g. Tcg2) are not preserved along these faults,
and thus the timing of activity on these faults is poorly known, but
must post-date early middle Miocene time. NE–SW-striking, NW-
dipping normal faults are less common southeast of Arroyo Sauzal, but
where such faults are observed, these deform and offset deposits of
late Miocene non-marine conglomerate (Tcg2) within the La Cruz
basin (Fig. 3).

Normal faults are less common in the Sauzal domain, northeast of
the La Cruz fault (Fig. 3). Where observed, these faults are typically
NE- to ENE-striking and inclined moderately to steeply down to the
northwest. SE-dippingnormal faults are even less common in the Sauzal
domain. A N-striking, west-dipping normal fault occurs just east of

Unlabelled image


Table 2 (continued)

TIB–10–10       Sonora, Mexico sanidine J = 0.004495 ± 0.25% #206KD57

2del 5.33E–14 54.9 1.431 4.3 9091 11.57 ± 0.18
1del 3.54E–14 45.2 1.451 3.1 4000 11.73 ± 0.22
3 3.86E–14 52.0 1.483 4.0 4167 11.98 ± 0.19
8 4.86E–14 43.9 1.488 4.1 7143 12.02 ± 0.19
13 6.91E–14 46.8 1.495 4.3 33333 12.08 ± 0.13
15 8.09E–14 61.5 1.498 4.1 11111 12.11 ± 0.10

4 S.E.K. Bennett et al. / Tectonophysics 693 (2016) 409–43524
Sauzal Spring. Displacement across the majority of normal faults
mapped northeast of the La Cruz fault (except the Sauzal fault) is mini-
mal (a few tens of meters).

Rocks on southern Isla Tiburón are also deformed by extension-
related folds. In the La Cruz domain, a gentle syncline with an interlimb
angle of ~130° occurs in the hanging wall of the Hihitiij fault, immedi-
atelywest of and parallel to the fault trace (Fig. 3). This syncline deforms
middle Miocene volcanic and sedimentary units (e.g. Tvs, Tlc, Trpa). The
Table 2
40Ar/39Ar laser total fusion data of single-crystal k-feldspar from volcanic rocks from Isla
Tiburón.

Hole 39Ark Radiogenic 40Ar* K/Ca K/Cl Age Error

number (Moles) yield (%) 39Ark (Ma) (Ma)

TIB–10–36b       Sonora, Mexico Sanidine J = 0.004606 ± 0.25% #204KD57

8 5.73E–14 28.7 1.436 3.2 2632 11.89 ± 0.20
9 2.29E–14 72.1 1.438 3.0 20000 11.91 ± 0.24
17 8.54E–14 36.3 1.448 4.1 2174 12.00 ± 0.16
18 6.45E–14 59.6 1.457 5.0 2778 12.06 ± 0.16
19 6.57E–14 43.1 1.459 3.9 3704 12.09 ± 0.17
14 2.27E–14 63.4 1.461 5.5 4762 12.10 ± 0.26
13 3.23E–14 38.9 1.468 4.7 3571 12.15 ± 0.30
6 2.16E–14 52.1 1.471 5.3 2439 12.19 ± 0.28
11 5.48E–14 77.8 1.472 2.7 3571 12.19 ± 0.11
10 4.06E–14 53.1 1.473 4.2 4348 12.20 ± 0.17
3 6.71E–14 54.8 1.473 3.6 4762 12.20 ± 0.15
7 3.64E–14 64.7 1.481 4.7 4545 12.26 ± 0.19
12 3.22E–14 87.3 1.483 2.9 1724 12.28 ± 0.17
5 2.46E–14 24.2 1.483 3.9 2041 12.28 ± 0.37
15 7.16E–14 81.9 1.485 3.7 20000 12.30 ± 0.09
16 1.12E–13 61.0 1.496 5.5 10000 12.39 ± 0.10
2 6.17E–14 96.1 1.501 7.1 *** 12.43 ± 0.09
1 6.97E–14 54.3 1.510 2.3 2632 12.51 ± 0.15
4del 3.81E–14 55.5 1.529 4.5 5263 12.66 ± 0.19

MSWD = 1.20 12.26 ± 0.07

TIB–10–41       Sonora, Mexico Sanidine J = 0.004607 ± 0.25% #202KD57

3 4.83E–14 79.8 1.423 4.8 4348 11.78 ± 0.32
13 1.36E–13 37.4 1.431 9.3 7692 11.85 ± 0.14
14 8.61E–14 47.8 1.433 5.0 9091 11.87 ± 0.18
4 7.30E–14 92.8 1.435 9.5 *** 11.89 ± 0.24
8 5.54E–14 52.9 1.446 9.6 *** 11.98 ± 0.26
5 3.84E–14 65.4 1.450 5.2 7692 12.01 ± 0.42
11 1.46E–13 44.3 1.453 5.0 5556 12.04 ± 0.12
16 1.34E–13 61.6 1.456 6.2 9091 12.05 ± 0.12
15 8.29E–14 80.9 1.469 3.4 5556 12.17 ± 0.16
17 9.77E–14 34.0 1.472 6.5 2174 12.19 ± 0.18
2 1.35E–13 89.5 1.475 8.5 50000 12.22 ± 0.11
18 6.28E–14 28.8 1.477 4.4 2128 12.23 ± 0.27
10 1.27E–13 70.2 1.480 5.5 *** 12.25 ± 0.12
12 9.47E–14 77.0 1.481 5.8 11111 12.27 ± 0.15
9 4.28E–14 20.7 1.490 3.8 2564 12.34 ± 0.38
6 9.51E–14 73.8 1.503 8.2 25000 12.44 ± 0.15
1 8.67E–14 71.8 1.506 9.3 *** 12.47 ± 0.17

MSWD = 1.31 12.14 ± 0.08

TIB–9–12       Sonora, Mexico Sanidine J = 0.004497 ± 0.25% #205KD57

12del 1.27E–13 79.7 1.487 10.2 5882 12.02 ± 0.07
5 5.74E–14 78.5 1.488 18.0 11111 12.03 ± 0.11
10 1.18E–13 79.1 1.502 13.8 11111 12.15 ± 0.07
2 4.42E–14 68.3 1.504 4.2 5882 12.16 ± 0.14
14 1.29E–13 69.6 1.505 8.0 4762 12.16 ± 0.09
15 1.71E–13 75.1 1.508 7.1 4167 12.19 ± 0.06
11 1.67E–13 69.3 1.510 9.0 4762 12.21 ± 0.07
4 6.62E–14 72.3 1.512 3.9 2273 12.22 ± 0.11
3 1.27E–13 73.0 1.512 9.2 5000 12.23 ± 0.06
6 8.68E–14 75.6 1.514 8.4 5556 12.24 ± 0.09
16 1.30E–13 71.6 1.515 6.7 7692 12.25 ± 0.07
13 1.03E–13 66.0 1.517 7.0 3226 12.26 ± 0.10
9 4.58E–14 58.0 1.518 4.7 3571 12.27 ± 0.16
8 6.44E–14 70.8 1.518 4.0 2564 12.28 ± 0.12
1del 6.87E–14 79.0 1.540 5.8 4000 12.45 ± 0.10
7del 9.09E–14 33.1 1.572 4.9 2041 12.71 ± 0.14

MSWD = 0.41 12.20 ± 0.05

Weighted Mean Age =

Weighted Mean Age =

Weighted Mean Age =

14 5.03E–14 46.4 1.502 4.0 2778 12.14 ± 0.16
16 3.34E–14 52.5 1.502 0.6 3571 12.14 ± 0.21
18 3.67E–14 50.6 1.506 4.7 5263 12.17 ± 0.20
9 4.39E–14 37.7 1.508 4.2 4167 12.19 ± 0.20
12 4.22E–14 35.6 1.519 1.3 3704 12.27 ± 0.24
7 5.30E–14 75.9 1.524 3.1 *** 12.31 ± 0.14
5 5.99E–14 42.5 1.524 4.9 3125 12.32 ± 0.17
4 4.02E–14 43.8 1.529 3.0 3704 12.36 ± 0.20
11 3.86E–14 52.3 1.533 3.7 2857 12.39 ± 0.22
10 5.07E–14 33.3 1.537 4.2 5000 12.42 ± 0.20
17 5.59E–14 51.4 1.550 4.1 1667 12.52 ± 0.16

MSWD = 0.85 12.21 ± 0.09

TIB–10–49       Sonora, Mexico sanidine J = 0.004498 ± 0.25% #203KD57

6 5.96E–14 23.4 1.452 8.6 2000 11.74 ± 0.24
14 4.42E–14 53.3 1.454 8.6 2439 11.76 ± 0.17
12 9.30E–14 34.8 1.470 6.3 3448 11.89 ± 0.15
9 3.79E–14 55.9 1.479 5.0 3030 11.96 ± 0.19
11 5.05E–14 69.7 1.481 6.2 6250 11.98 ± 0.13
3 4.64E–14 46.5 1.490 4.7 2000 12.05 ± 0.18
8 5.70E–14 56.0 1.493 4.3 5263 12.08 ± 0.14
10 1.09E–13 67.6 1.500 9.5 5000 12.13 ± 0.08
5 3.64E–14 61.4 1.512 4.5 4348 12.23 ± 0.18
15 1.27E–13 50.5 1.521 10.9 4545 12.30 ± 0.10
4 4.05E–14 50.2 1.522 4.8 2703 12.31 ± 0.19
13 5.40E–14 54.6 1.527 3.4 5556 12.35 ± 0.15
7 3.48E–14 63.8 1.531 3.9 5882 12.38 ± 0.19
1del 2.66E–14 50.7 1.567 3.4 4167 12.67 ± 0.27
2del 3.28E–14 34.2 1.573 3.1 *** 12.72 ± 0.25

MSWD = 1.71 12.12 ± 0.08

Analyses in gray italics are not used to calculate the weighted mean age

Weighted Mean Age =

Weighted Mean Age =
axial trace is cut by a NW-striking dextral-oblique normal fault and off-
set by ~120 m of dextral separation. Additional folds are observed in
the Sauzal domain, just south of Sauzal Spring. Here, a gentle to open
syncline and anticline occur in the hanging wall and footwall, respec-
tively, of a west-dipping normal fault (Fig. 10E). This fault and related
folds deform latest(?) middle Miocene units (e.g. Tcg1, Ttsf) and dis-
plays a few tens of meters of total displacement.

5.7. Thrust faults and related folds

Thrust faults on southern Isla Tiburón deform rocks adjacent to the
La Cruz fault (Fig. 3). Northeast of the fault, a pair of E–W-striking, op-
positely dipping thrust faults bound the only known plutonic exposure
in the Sauzal domain (Figs. 3 and 10D). Another thrust fault occurs
southwest of the La Cruz fault, between the Arroyo Sauzal delta and
Saguaro Pass, adjacent to a subtle left (restraining) fault bend (Fig. 3).
This thrust fault strikes NW–SE and dips gently (30°) to the northeast,
juxtaposing latest middle Miocene rhyolite flows of Punta Amarillo
(Trpa2) structurally above younger, late Miocene non-marine con-
glomerate (Tcg2) of the La Cruz basin. Additional thrust faults and
folds are present on both sides of the La Cruz fault on southwest Isla
Tiburón (Bennett et al., 2015).

Compression-related folds also deform rocks on southern Isla
Tiburón. South,west, and northwest of Hast Hinamj, axial traces of gen-
tle folds (~140–160° interlimb angles) are oriented approximately
NE–SW and E–W(Figs. 3 and 10A). Near the shoreline, a set of folds de-
formplutonic rocks and the entire early tomiddleMiocene stratigraph-
ic section: early Miocene basalt (Tb), non-marine conglomerate (Tcg1),
and the ~12.2 Ma tuff of San Felipe (Ttsf). On the southwest flank of
Hast Hinamj, one fold has been cut by a younger, east-dipping normal
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fault. It is unclear if this fold deforms the undulatory, sub-horizontal
basal contact of the dacite of Hast Hinamj (Tdhh). Hast Hinamj marks
a structural transition in the La Cruz domain: to the northwest strati-
graphic units typically are inclined down to the north and northwest,
whereas to the southeast units typically are inclined down to the north-
east (Figs. 3 and 10A). Folds also occur northeast of the La Cruz fault in
the Sauzal domain, where red volcaniclastic sandstone and lacustrine
limestone strata (Tsr) are folded across ~E–W-striking axial planes
(Figs. 3 and 10D). Additional folds deform latest(?) middle Miocene
non-marine conglomerate (Tcg1) and the ~12.2 Ma tuff of San Felipe
(Ttsf) within a zone of left-stepping (restraining) splays of the dextral
La Cruz fault just west of the Arroyo Sauzal drainage (Fig. 3). These
folds trend NE–SW and are compatible with predicted secondary struc-
tures in a dextral transtensional wrench zone (Sanderson andMarchini,
1984).

6. History of faulting and basin formation on southern Isla Tiburón

The structural and stratigraphic architecture of southern Isla Tiburón
records the history of rift-related faulting and syn-tectonic basin forma-
tion.We use our observations of these relationships and numerous geo-
chronologic age constraints (Fig. 8; Table 4) to interpret (1) the timing
of two deformation phases and related basin sedimentation, and
(2) the magnitude of dextral faulting on the La Cruz fault zone.

6.1. Timing of faulting and basin formation

6.1.1. Phase 1: Middle to late(?) Miocene normal faulting and basin
formation

On southern Isla Tiburón, evidence for the earliest faulting comes
from several normal faults that cut early to middle Miocene volcanic
rocks. This early normal faulting phase (Phase 1) includes the Sauzal
and Colorado normal faults. Thick (N200m) sections of latest(?)middle
Miocene deposits, consisting of non-marine conglomerate (Tcg1) and
the ~12.2Ma tuff of San Felipe (Ttsf), are observed adjacent to these nor-
mal faults. Contrasting magnitudes of hanging wall and footwall block
tilting and the distribution and age of these latest(?) middle Miocene
deposits provides constraints on the magnitude, style, and timing of
fault activity.

The magnitude and style of fault offset on, and the age of hanging
wall units associated with, the Colorado and Sauzal faults are similar.
Both faults display a similar magnitude (~1.5–1.7 km) of total dip-slip
displacement. Their hanging wall blocks were both tilted by greater
amounts than their footwall blocks, forming an angular unconformity
only within their hanging wall blocks. In the hanging wall of the
Colorado fault, latest(?) middle Miocene conglomerate and the tuff of
San Felipe overlie early Miocene basalt flows above an angular uncon-
formity (Figs. 9A and 10A), suggesting hanging wall block tilting
began prior to ~12.2 Ma. In the hanging wall of the Sauzal fault, middle
Miocene sediments and the tuff of San Felipe overlie poorly stratified
volcanic breccia and lava flows, where the presence of a similar angular
unconformity is likely, but difficult to verify (Fig. 10E).

The footwall blocks of the Colorado and Sauzal faults also share
similar histories, which are slightly different than their hanging
wall block histories. In the footwall of the Colorado fault southeast
of the Arroyo Sauzal delta, the contact between early to middle Mio-
cene volcanic rocks and latest(?) middle Miocene strata appears to
be conformable. Though the ~12.2 tuff of San Felipe is absent here,
the ~12.2 Ma tuff of Ensenada de La Cruz and the overlying rhyolite
flows of Punta Amarillo are present and are tilted approximately
the same amount as the underlying early to middle Miocene rocks
(e.g. Tb, Tvs; Figs. 10C and D). Conglomerate deposits (Tcg1) that
overlie these volcanic units are gradually less inclined up-section
(fanning dips), with the uppermost Tcg1 beds inclined similar to
the basal contact of the overlying ~7.9 Ma basalt breccia of Alta
Sauzal (Tbas; Fig. 10C). This suggests that normal-fault related tilting
began after ~12.2Ma in the footwall of the Colorado fault. In the foot-
wall of the Sauzal fault, exposures of these Tcg1 sediments and the
~12.2 Ma tuff of Ensenada de La Cruz are very limited. Where ex-
posed ~3 km southeast of Sauzal Spring, these units overlie early
Miocene volcanic rocks above an erosional unconformity, but are
tilted by a similar amount as the underlying units (Fig. 10E).

Together, these relationships support the interpretation that the
Colorado and Sauzal faults were half-graben listric(?) normal fault sys-
tems and their tectonic escarpments controlled the spatial extent of rel-
atively thick latest(?) middle Miocene conglomerate deposition and
ash-flow tuff emplacement (Figs. 10A and E). These deposits overlie
the hanging wall angular unconformity are mostly restricted to, and
are relatively thickerwithin, the half-graben hangingwall region imme-
diately west of the Colorado and Sauzal faults (Fig. 3). Although the
hanging wall blocks of these normal faults appear to have begun tilting
prior to ~12.2 Ma, their footwall blocks appear to have begun tilting
after ~12.2Ma, recorded by an erosional, rather than angular, unconfor-
mity. There is sparse evidence of an angular unconformity in these foot-
wall blocks. However, where observed, the angular discordance is
subtle and smaller than the discordance observed in the hanging wall
blocks.We interpret these relationships as evidence that Tcg1 conglom-
erate and the tuff of San Felipewere syn-tectonic units that accumulated
in the hanging walls during normal fault activity on the Colorado and
Sauzal faults.

The onset of normal faulting on the Sauzal fault and Colorado fault is
poorly constrained, but post-dates ~19–17 Ma, the age of the youngest
units (e.g. Tb, Tba) that are cut by these normal faults and underlie the
hanging wall angular unconformity. Syn-tectonic deposits of coarse
non-marine conglomerate and interbedded tuffs overlie the hanging
wall angular unconformity (Figs. 10A and E), which suggests that nor-
mal faulting and hanging wall block tilting initiated prior to ~12.2 Ma,
similar to middle Miocene normal faulting documented in western
Sinaloa (Ferrari et al., 2013).

A minimum age for this early phase of normal faulting is difficult
to assign as normal faulting continued after 12.2 Ma and likely into
the subsequent phase of strike-slip faulting. Fault kinematic data
broadly support these timing constraints, as faults measured in
pre-8 Ma rocks are dominated by N- to NE-striking normal faults
with moderate to steep slip vectors (Fig. 3). Importantly, several
Phase 1 normal faults on southeastern Isla Tiburón are buried and
capped by latest Miocene to earliest Pliocene deposits of the La
Cruz basin and cut by NW-striking strike-slip faults (Figs 3 and 10).
These crosscutting relationships signify an important transition
from predominantly normal fault activity to a more transtensional
regime involving strike-slip faults.

6.1.2. Phase 2: Late Miocene to Pliocene(?) strike-slip faulting and basin
formation

We document structural crosscutting relationships and syn-
tectonic basin development that constrain the onset of activity on
the La Cruz strike-slip fault. NW-striking dextral and NNE-striking si-
nistral strike-slip faults cut and deform older normal faults (e.g.
Sauzal and Colorado faults) and latest(?) middle Miocene sedimen-
tary and volcanic deposits (e.g. Tcg1, Ttsf) that accumulated in the
hanging wall of these faults. This relationship suggests that strike-
slip faulting (Phase 2) commenced after the onset of earlier, Phase
1 normal faulting.

Timing information for the onset of strike-slip activity on the La
Cruz fault is also constrained by syn-tectonic deposits of the La
Cruz basin, which accumulated in an elongate trough, or negative
flower structure, that formed along the fault zone. Approximately
3 km east of the Arroyo Sauzal delta, La Cruz basin conglomerate
(Tcg2) overlies the ~7.9 Ma basalt breccia of Alta Sauzal (Tbas)
above a ~ 5–15° angular unconformity (Fig. 10C). Along strike to
the northwest, we document a ~ 6.9 Ma ash bed interstratified near
the base of a highly deformed section of Tcg2 within the La Cruz



Table 3
U–Th–Pb analytical data for LA-ICPMS spot analyses on zircon grains for volcanic rocks from Isla Tiburón.

CORRECTED RATIOS CORRECTED AGES (Ma)

U# (ppm) Th# (ppm) Th/U 207Pb/206Pb† ±1s* 207Pb/235U† ±1s* 206Pb/238U† ±1s* 208Pb/232Th† ±1s* Rho % disc** 206Pb/238U ±1s* 207Pb/235U±1s* 207Pb/206Pb±1s* 208Pb/232Th±1s* Best age (Ma) 1s

Sample TIB-10-52          Mount ICGEO-17 (January 2011)

Zircon_37 688 444 0.58 0.0576 0.0032 0.0078 0.0004 0.0010 0.00001 0.0003 0.00001 0.240 19 6.4 0.1 7.9 0.4 513 122 5.9 0.2 6.4 ± 0.1
Zircon_12 386 196 0.45 0.0677 0.0044 0.0094 0.0007 0.0010 0.00002 0.0003 0.00001 0.310 32 6.5 0.1 9.5 0.7 859 137 6.2 0.1 6.5 ± 0.1
Zircon_29 469 390 0.75 0.0673 0.0095 0.0094 0.0014 0.0010 0.00002 0.0003 0.00001 0.370 28 6.5 0.1 9.0 1.0 846 299 6.2 0.1 6.5 ± 0.1
Zircon_22 602 368 0.55 0.0648 0.0032 0.0090 0.0005 0.0010 0.00001 0.0003 0.00001 0.190 27 6.6 0.1 9.1 0.5 769 104 6.3 0.2 6.6 ± 0.1
Zircon_23 373 203 0.49 0.0678 0.0043 0.0094 0.0006 0.0010 0.00002 0.0003 0.00001 0.240 31 6.6 0.1 9.5 0.6 863 132 6.5 0.2 6.6 ± 0.1
Zircon_34 361 161 0.40 0.0474 0.0040 0.0066 0.0006 0.0010 0.00002 0.0003 0.00002 0.240 1 6.6 0.1 6.7 0.6 71 178 5.7 0.4 6.6 ± 0.1
Zircon_25 342 166 0.44 0.0734 0.0038 0.0104 0.0006 0.0010 0.00002 0.0004 0.00002 0.320 36 6.7 0.1 10.5 0.6 1026 106 7.1 0.4 6.7 ± 0.1
Zircon_4 332 162 0.44 0.0552 0.0059 0.0079 0.0009 0.0010 0.00002 0.0003 0.00001 0.210 16 6.7 0.1 8.0 0.9 420 234 6.6 0.2 6.7 ± 0.1
Zircon_6 329 147 0.40 0.0529 0.0046 0.0076 0.0007 0.0010 0.00002 0.0003 0.00001 0.240 13 6.7 0.1 7.7 0.7 326 192 6.6 0.2 6.7 ± 0.1
Zircon_8 373 195 0.47 0.0726 0.0047 0.0105 0.0007 0.0010 0.00002 0.0003 0.00001 0.260 37 6.7 0.1 10.6 0.7 1004 134 6.4 0.1 6.7 ± 0.1
Zircon_1 492 279 0.51 0.0548 0.0037 0.0079 0.0006 0.0011 0.00001 0.0004 0.00001 0.270 14 6.8 0.1 7.9 0.6 405 153 7.1 0.2 6.8 ± 0.1
Zircon_13 319 150 0.42 0.0660 0.0051 0.0095 0.0008 0.0011 0.00002 0.0003 0.00002 0.230 29 6.8 0.1 9.6 0.8 806 164 6.9 0.4 6.8 ± 0.1
Zircon_15 464 259 0.50 0.0625 0.0089 0.0090 0.0013 0.0011 0.00002 0.0003 0.00001 0.250 24 6.8 0.1 9.0 1.0 692 307 6.5 0.2 6.8 ± 0.1
Zircon_7 364 174 0.43 0.0581 0.0051 0.0084 0.0008 0.0011 0.00002 0.0003 0.00001 0.290 20 6.8 0.1 8.5 0.8 533 196 6.6 0.1 6.8 ± 0.1
Zircon_17 490 276 0.51 0.0781 0.0065 0.0115 0.0010 0.0011 0.00002 0.0003 0.00001 0.410 43 6.9 0.1 12.0 1.0 1150 169 6.4 0.1 6.9 ± 0.1
Zircon_18 358 182 0.46 0.0671 0.0059 0.0100 0.0009 0.0011 0.00002 0.0003 0.00001 0.250 32 6.9 0.1 10.1 0.9 842 185 6.6 0.1 6.9 ± 0.1
Zircon_19 412 182 0.40 0.0734 0.0076 0.0109 0.0012 0.0011 0.00002 0.0003 0.00001 0.270 37 6.9 0.1 11.0 1.0 1025 217 6.5 0.1 6.9 ± 0.1
Zircon_28 410 195 0.43 0.0667 0.0066 0.0099 0.0010 0.0011 0.00002 0.0003 0.00001 0.220 31 6.9 0.1 10.0 1.0 830 211 6.6 0.1 6.9 ± 0.1
Zircon_35 350 167 0.43 0.0738 0.0046 0.0107 0.0007 0.0011 0.00002 0.0003 0.00002 0.270 36 6.9 0.1 10.8 0.7 1036 127 6.9 0.4 6.9 ± 0.1
Zircon_2 219 99 0.41 0.0624 0.0084 0.0094 0.0013 0.0011 0.00002 0.0003 0.00001 0.200 22 7.0 0.1 9.0 1.0 689 287 6.8 0.2 7.0 ± 0.1
Zircon_21 242 108 0.40 0.0796 0.0089 0.0119 0.0014 0.0011 0.00003 0.0003 0.00001 0.370 42 7.0 0.2 12.0 1.0 1187 230 6.5 0.2 7.0 ± 0.2
Zircon_24 334 170 0.46 0.0670 0.0068 0.0101 0.0011 0.0011 0.00002 0.0003 0.00001 0.250 30 7.0 0.1 10.0 1.0 837 217 6.7 0.1 7.0 ± 0.1
Zircon_30 331 153 0.42 0.0809 0.0052 0.0122 0.0009 0.0011 0.00002 0.0003 0.00001 0.410 43 7.0 0.1 12.3 0.9 1219 129 6.6 0.1 7.0 ± 0.1
Zircon_33 406 204 0.45 0.0718 0.0102 0.0108 0.0016 0.0011 0.00002 0.0003 0.00001 0.250 36 7.0 0.1 11.0 2.0 979 296 6.6 0.2 7.0 ± 0.1
Zircon_9 304 147 0.43 0.0680 0.0084 0.0102 0.0013 0.0011 0.00002 0.0003 0.00001 0.220 30 7.0 0.1 10.0 1.0 868 260 6.7 0.2 7.0 ± 0.1
Zircon_39 287 131 0.41 0.0618 0.0077 0.0093 0.0012 0.0011 0.00003 0.0003 0.00001 0.280 22 7.0 0.2 9.0 1.0 669 266 6.8 0.2 7.0 ± 0.2
Zircon_16 279 99 0.32 0.0635 0.0055 0.0096 0.0008 0.0011 0.00002 0.0004 0.00002 0.170 26 7.2 0.1 9.7 0.8 724 186 7.3 0.4 7.2 ± 0.1
Zircon_26 233 103 0.40 0.0789 0.0066 0.0117 0.0010 0.0011 0.00002 0.0004 0.00002 0.260 40 7.2 0.1 12.0 1.0 1170 168 7.5 0.4 7.2 ± 0.1
Zircon_31 202 83 0.37 0.0641 0.0096 0.0093 0.0014 0.0011 0.00003 0.0004 0.00003 0.200 20 7.2 0.2 9.0 1.0 746 317 7.1 0.6 7.2 ± 0.2
Zircon_11 219 94 0.38 0.0705 0.0084 0.0111 0.0014 0.0011 0.00003 0.0003 0.00001 0.220 34 7.3 0.2 11.0 1.0 944 246 7.0 0.2 7.3 ± 0.2
Zircon_3 249 114 0.41 0.0667 0.0081 0.0104 0.0013 0.0011 0.00002 0.0004 0.00001 0.210 34 7.3 0.1 11.0 1.0 827 254 7.0 0.2 7.3 ± 0.1
Zircon_5 234 107 0.41 0.0750 0.0117 0.0117 0.0019 0.0011 0.00002 0.0003 0.00001 0.230 39 7.3 0.1 12.0 2.0 1068 324 6.9 0.2 7.3 ± 0.1
Zircon_14 269 104 0.35 0.0655 0.0057 0.0102 0.0009 0.0012 0.00002 0.0004 0.00002 0.210 28 7.4 0.1 10.3 0.9 791 186 7.3 0.4 7.4 ± 0.1

n = 33 6.87 ± 0.07

Sample TIB-10-51         (Tuffs of Hipat Mesa)       Mount BAJA-ISLA-1     (February 2013)

TIB1051_13 846 763 0.73 0.0680 0.0085 0.0057 0.0007 0.0006 0.00001 0.0002 0.00001 0.180 32 3.9 0.1 5.7 0.8 868 256 3.7 0.1 3.9 ± 0.1
TIB1051_22 700 805 0.93 0.0909 0.0133 0.0077 0.0012 0.0006 0.00002 0.0002 0.00001 0.230 51 3.9 0.1 8 1.0 1445 276 3.6 0.1 3.9 ± 0.1
TIB1051_5 439 265 0.49 0.0993 0.0211 0.0086 0.0019 0.0006 0.00002 0.0002 0.00001 0.170 56 4.0 0.1 9 2.0 1612 441 3.7 0.2 4.0 ± 0.1
TIB1051_6 455 417 0.74 0.0653 0.0115 0.0057 0.0011 0.0006 0.00002 0.0002 0.00001 0.210 32 4.1 0.1 6 1.0 785 377 3.9 0.2 4.1 ± 0.1
TIB1051_15 224 166 0.60 0.1675 0.0386 0.0151 0.0038 0.0007 0.00003 0.0002 0.00001 0.320 72 4.2 0.2 15 4.0 2533 403 3.7 0.2 4.2 ± 0.2
TIB1051_7 450 391 0.71 0.0872 0.0206 0.0080 0.0020 0.0007 0.00002 0.0002 0.00001 0.210 46 4.3 0.1 8 2.0 1366 506 4.0 0.2 4.3 ± 0.1
TIB1051_9 472 213 0.37 0.1357 0.0313 0.0124 0.0030 0.0007 0.00002 0.0002 0.00001 0.220 67 4.3 0.1 13 3.0 2173 421 3.8 0.2 4.3 ± 0.1
TIB1051_12 416 216 0.42 0.1116 0.0247 0.0103 0.0024 0.0007 0.00002 0.0002 0.00001 0.170 57 4.3 0.1 10 2.0 1825 419 3.9 0.2 4.3 ± 0.1
TIB1051_19 266 139 0.42 0.1265 0.0304 0.0118 0.0030 0.0007 0.00003 0.0002 0.00001 0.220 64 4.3 0.2 12 3.0 2050 450 3.9 0.2 4.3 ± 0.2
TIB1051_24 412 307 0.61 0.1009 0.0252 0.0087 0.0022 0.0007 0.00003 0.0002 0.00005 0.170 52 4.3 0.2 9 2.0 1640 499 4.0 1.0 4.3 ± 0.2
TIB1051_17 698 447 0.52 0.0757 0.0172 0.0071 0.0017 0.0007 0.00002 0.0002 0.00001 0.220 37 4.4 0.1 7 2.0 1088 459 4.1 0.3 4.4 ± 0.1
TIB1051_18 462 217 0.38 0.0982 0.0168 0.0094 0.0017 0.0007 0.00002 0.0002 0.00001 0.190 55 4.5 0.1 10 2.0 1591 322 4.1 0.1 4.5 ± 0.1
TIB1051_23 314 244 0.63 0.0884 0.0224 0.0085 0.0024 0.0007 0.00003 0.0002 0.00001 0.270 50 4.5 0.2 9 2.0 1391 505 4.2 0.3 4.5 ± 0.2
TIB1051_3 189 94 0.40 0.1067 0.0247 0.0105 0.0026 0.0007 0.00004 0.0002 0.00001 0.320 58 4.6 0.3 11 3.0 1744 477 4.2 0.3 4.6 ± 0.3
TIB1051_4 370 244 0.53 0.1248 0.0223 0.0123 0.0023 0.0007 0.00003 0.0002 0.00001 0.230 62 4.6 0.2 12 2.0 2026 337 4.1 0.2 4.6 ± 0.2
TIB1051_16 360 194 0.44 0.0966 0.0219 0.0096 0.0024 0.0007 0.00004 0.0002 0.00001 0.350 54 4.6 0.3 10 2.0 1559 446 4.3 0.3 4.6 ± 0.3
TIB1051_1 161 69 0.35 0.1405 0.0333 0.0149 0.0036 0.0008 0.00004 0.0002 0.00001 0.240 67 4.9 0.3 15 4.0 2234 469 4.4 0.3 4.9 ± 0.3
TIB1051_8 204 159 0.63 0.1501 0.0325 0.0157 0.0038 0.0008 0.00004 0.0002 0.00001 0.340 69 4.9 0.3 16 4.0 2347 383 4.3 0.2 4.9 ± 0.3
TIB1051_25 181 143 0.64 0.1574 0.0281 0.0174 0.0035 0.0008 0.00004 0.0002 0.00001 0.370 69 5.2 0.3 17 4.0 2428 304 4.5 0.2 5.2 ± 0.3
TIB1051_21 220 127 0.47 0.1188 0.0270 0.0135 0.0033 0.0008 0.00004 0.0002 0.00001 0.240 62 5.3 0.3 14 3.0 1939 427 4.8 0.3 5.3 ± 0.3

Weighted206 Pb/238U mean age =

MSWD = 2.0; n = 22

TIB1051_2 267 63 0.19 0.0771 0.0111 0.0247 0.0036 0.0023 0.00006 0.0007 0.00002 0.170 40 15.0 0.4 25 4.0 1123 297 14.1 0.4 15.0 ± 0.4
TIB1051_11 145 99 0.55 0.0530 0.0030 0.1197 0.0070 0.0164 0.00020 0.0050 0.00016 0.210 9 105.0 1.0 115 6.0 329 125 101.0 3.0 105.0 ± 1.0
TIB1051_20 488 265 0.44 0.0524 0.0014 0.1548 0.0044 0.0214 0.00019 0.0066 0.00017 0.310 7 136.0 1.0 146 4.0 304 60 133.0 3.0 136.0 ± 1.0
TIB1051_14 403 207 0.42 0.0527 0.0015 0.1644 0.0049 0.0226 0.00021 0.0072 0.00017 0.330 7 144.0 1.0 155 4.0 315 62 144.0 3.0 144.0 ± 1.0

n = 24 4.37 ± 0.08

#U and Th concentrations (ppm) are calculated relative to analyses of trace-element glass standard NIST 612.
†Isotopic ratios ratios are corrected relative to PLE standard zircon for mass bias and down-hole fractionation (PLE, Plesovice = ∼ 337 Ma; Slama et al., 2008). Common Pb corrections were made using the Andersen Method (Andersen, 2002).

*All errors in isotopic ratios and ages are absolute and given at the 1-sigma level except for the Weighted Mean 206Pb/238U age that is reported at the 2-sigma level. 

**Percentage discordance obtained using the following equation (100*[(age207Pb/235U)-(age206Pb/238U)]/age 207Pb/235U). Positive and negative values indicate normal and inverse discordance, respectively.

Individual zircon ages in bold were used to calculate the weighted mean206Pb/238 U age and MSWD (Mean Square of Weigthed Deviates) using the computacional program Isoplot (Ludwig , 2003).

Weighted206Pb/238U mean age = 

MSWD = 0.65; n = 12
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Table 4
Summary of geochronologic ages from southern Isla Tiburon, Sonora, Mexico.

Map unit Rock type Sample Technique Phase Age Age uncertainty Citation

Easting Northing number (Ma) (Ma)

Tcsf rhyodacite 350096 3197359 TIB–09–06 Ar/Ar matrix 3.51 0.05 Bennett et al. (2015)

Tcsd rhyodacite (dike) 350666 3198298 S2G–13 K–Ar plagioclase 3.70 0.90 Gastil and Krummenacher (1977b)

Tcsf rhyodacite 350096 3197359 TIB–09–06 U/Pb zircon 4.13 0.09 Bennett et al. (2015)

Tcsf rhyodacite 350132 3196657 JNS–10 K–Ar whole rock 4.16 1.81 Neuhaus (1989)

Tthm tuff 351869 3199506 TIB–11–20 U/Pb zircon 4.34 0.20 Bennett et al. (2015)

Tthm tuff 358570 3192177 TIB–10–51 U/Pb zircon 4.37 0.08 this study

Tthp rhyolite 350664 3197520 JN51a K–Ar feldspar 5.67 0.17 Neuhaus (1989)

Ttoa welded tuff 352627 3196919 TIB–09–02 U/Pb zircon 6.01 0.20 Bennett et al. (2015)

Tteb welded tuff 353765 3195780 MC275 K–Ar whole rock 6.11 1.81 Gastil et al. (1999)

Ttas tuff 349494 3197688 TIB–98–11 Ar/Ar k–spar 6.40 1.63 Oskin (2002)

Tthp tuff 350759 3197456 TIB–09–15 Ar/Ar k–spar 6.44 0.05 Bennett et al. (2015)

Tthp tuff 350665 3197529 SWT–99–28 Ar/Ar k–spar 6.67 0.83 Oskin (2002)

tuff in Tcg2 tuff 358843 3190902 TIB–10–52 U/Pb zircon 6.87 0.07 this study

Tbas? basalt 362236 3187872 S2B–3 K–Ar whole rock 7.00 0.30 Gastil and Krummenacher (1977b)

Tbas basalt breccia 363610 3186984 TIB–10–34 Ar/Ar matrix 7.86 0.33 this study

Tbx landslide breccia 351658 3197221 5 Ar/Ar plagioclase 9.02 1.18 Gastil et al. (1999)

Ttsf welded tuff 354617 3191273 TIB–98–25 Ar/Ar k–spar 9.58 2.66 Oskin (2002)

Tlc welded tuff 367948 3182633 TIB–98–02 Ar/Ar k–spar 11.25 1.98 Oskin (2002)

Tbxv volcanic breccia 353767 3196214 276 Ar/Ar feldspar 11.44 2.61 Gastil et al. (1999)

Ttsf welded tuff 360147 3191393 TIB–10–49 Ar/Ar k–spar 12.12 0.08 this study

Tlc welded tuff 366063 3188124 TIB–10–41 Ar/Ar k–spar 12.14 0.08 this study

Ttsf welded tuff 353451 3191949 TIB–09–12 Ar/Ar k–spar 12.20 0.05 this study

Tlc welded tuff 368057 3182575 TIB–10–10 Ar/Ar k–spar 12.21 0.09 this study

Tlc welded tuff 368720 3184514 TIB–10–36B Ar/Ar k–spar 12.26 0.07 this study

Tbxv andesitic breccia 352090 3197222 83BSJ260 K–Ar n/a 12.90 0.40 Smith et al. (1985)

Tvc volcaniclastic congl. 349503 3197770 JN216B K–Ar whole rock 14.92 0.80 Neuhaus (1989)

Tb andesite 350070 3196191 JN219 K–Ar whole rock 14.96 2.17 Neuhaus (1989)

Tba andesitic basalt 351116 3196133 JN272 K–Ar feldspar 15.24 0.54 Neuhaus (1989)

Tb basalt 349090 3195572 JN106 K–Ar whole rock 15.30 0.54 Neuhaus (1989)

Tba latite 353466 3194261 JN237 K–Ar feldspar 17.40 0.40 Neuhaus (1989)

Tb basalt 348878 3196649 JN223 K–Ar whole rock 17.67 1.40 Neuhaus (1989)

Tbxv andesitic breccia 352715 3196721 284 Ar/Ar hornblende 17.68 0.15 Gastil et al. (1999)

Tba basalt 352357 3195912 JN252 K–Ar feldspar 17.70 0.50 Neuhaus (1989)

Tba basalt 352000 3196056 JN145 K–Ar feldspar 17.80 0.60 Neuhaus (1989)

Tb basalt 348652 3193954 JN274 K–Ar whole rock 18.52 0.60 Neuhaus (1989)

Tbxv andesitic breccia 352090 3197222 TIB–0917 U/Pb zircon 18.70 0.19 Bennett et al. (2015)

Tvc volcaniclastic congl. 349427 3197662 S2G–12 K–Ar hornblende 18.80 2.40 Gastil and Krummenacher (1977b)

Tb basalt 348878 3196649 JN223 K–Ar feldspar 19.00 0.40 Neuhaus (1989)

Tba andesite 351654 3196404 JN150 K–Ar feldspar 19.10 0.60 Neuhaus (1989)

Tba andesite 350640 3196387 JNA–1 K–Ar hornblende 20.50 0.50 Neuhaus (1989)

Tha andesite 367349 3185832 TIB–10–3 Ar/Ar matrix 20.68 0.20 this study

Tb andesitic basalt 348739 3193654 JN4–15(274a) K–Ar feldspar 21.00 0.50 Neuhaus (1989)

Tvc volcaniclastic congl. 349427 3197662 S2G–12 K–Ar plagioclase 22.70 1.10 Gastil and Krummenacher (1977b)

Kt tonalite 366393 3183845 TIB–10–12 U/Pb zircon 86.70 0.70 Niño–Estrada et al. (2014)

Kt tonalite 369331 3185735 TIB–10–30 U/Pb zircon 90.00 1.10 Niño–Estrada et al. (2014)

* Coordinates are in WGS84 Datium and UTM Zone 12N projection

Sample location*
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fault zone (Fig. 10B). Together, these observations and bracketing
volcanic ages suggest that strike-slip deformation, as recorded by
the onset of syn-tectonic conglomerate deposition in the La Cruz
basin, initiated ~8–7 Ma. Along the northwesternmost onshore ex-
posure of the La Cruz fault, marine strata in the SWIT basin accumu-
lated above an angular unconformity that cuts across early Miocene
volcanic rocks and was related to dextral motion on the fault. Here,
Bennett et al. (2015) documented a ~ 6.4 Ma ash-flow tuff at the
base of this basin, below the marine strata, which supports a similar
history of latest Miocene activity on the La Cruz fault.

Slip on the La Cruz fault appears to have ceased largely by
~4.4–3.5 Ma. At Hipat Mesa, relatively undeformed deposits of non-
marine conglomerate (Tcg3) and the ~4.4 Ma tuffs of Hipat Mesa
(Tthm) bury and cap deformed, syn-tectonic La Cruz basin fill (Figs. 3
and 4), similar to a ~ 3.5–4.1Ma capping lava flow near the southwestern
tip of the island (Bennett et al., 2015). Fault kinematic data broadly sup-
port these timing constraints for strike-slip faulting, as faults measured
in 8–4Ma rocks are dominated by steep, NW-striking faults with moder-
ate to shallow slip vectors (Fig. 3 stereonet insets).
6.2. Magnitude of dextral faulting on the La Cruz fault

6.2.1. Dextral offset of early to middle Miocene units
Prior to this study, total dextral displacement along the La Cruz fault

was not well constrained (Oskin and Stock, 2003b). The results of our
detailed mapping (Fig. 3) reveal correlative deposits of early to middle
Miocene volcanic rocks and two latest middle Miocene ash-flow tuffs
across the La Cruz fault. We use a simplified geologic and structural
map (Fig. 11A) of the present-day distributions of these units to draw
connections between the La Cruz and Sauzal structural domains south-
west and northeast of the fault, respectively, and to estimate total dex-
tral displacement (Fig. 11B). These units may also prove useful in future
investigations to determine themagnitude of fault offset on the Tiburón
transform fault, between Isla Tiburón and Isla Ángel de al Guarda.

The oldest correlative unitswe document across the La Cruz fault are
two widespread sub-sequences that are part of the early to middle
Miocene volcanic and sedimentary sequence (Fig. 11A). The first sub-
sequence (gray units on Fig. 11) consists of basalt flows and discontinu-
ous beds of reddish volcaniclastic sandstone and lacustrine limestone.
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Fig. 11. (A) Present-day distribution of correlative map units across the La Cruz strike-slip fault. Representative bedding orientations illustrate the gently folded, shallow to moderately
dipping nature of map units. (B) Preferred restoration of ~5 km of dextral slip brings correlative map units into general alignment. Simplified oblique-view block diagrams in each
panel illustrate how deposits of the ~12.2 Ma tuff of San Felipe were likely restricted to a fault-controlled paleovalley, which was subsequently offset by the dextral La Cruz fault.
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Overmuch of the La Cruz domain, these units lie near the base of the early
Miocene section (Fig. 3). This basaltic sub-sequence occurs across the
western and central portions of the La Cruz domain, where it is relatively
thick and widespread. It also occurs within the eastern portion of the
Sauzal domain, where it is relatively thin (Figs. 3 and 10), and overlies
older andesitic rocks that are not exposed in the La Cruz domain (not col-
ored on Fig. 11; see Fig. 3). The second sub-sequence (blue units on
Fig. 11) consists of andesitic flows and breccias, which are consistently
found to stratigraphically overlie the basaltic sub-sequence. This overly-
ing andesitic sub-sequence primarily occurs within the Sauzal domain,
but importantly, it also occurs within the La Cruz domain adjacent to
the La Cruz fault (Figs. 3, 10B, and 11). We document how exposures of
the basaltic sub-sequence (gray units on Fig. 11) thin from west to east
(Fig. 3) and speculate that this thinning pattern continues across the La
Cruz fault, which would explain the relatively thin basaltic sub-
sequence exposed within the Sauzal domain (Fig. 10C). In contrast, the
andesitic sub-sequence (blue units on Fig. 11) appears thickest to the
northeast (Figs. 10C, D, and E) and is relatively thinner to the southwest
(Figs. 3 and 10B).

Direct correlation across the La Cruz fault of individual flows or map
units from these basaltic and andesitic sub-sequences is complicated by
an unknown amount of down-to-the-northeast displacement together
with moderate amounts of block tilting down towards the fault zone.
Such verticalmotion contributes to juxtaposition of disparate stratigraph-
ic levels and thicknesses of these sub-sequences. These factors preclude a
robust and unique estimate of dextral offset across the La Cruz fault using
these sub-sequences. However, restorations of ~5–15 km of dextral mo-
tion bring these similar units into general juxtaposition (e.g. Fig. 11).
Thus, the total post-early Miocene dextral offset on the La Cruz fault is
likely less than the minimum of 28 km predicted by Oskin and Stock
(2003b).

6.2.2. Dextral offset of latest(?) middle Miocene units
Correlation of latest(?)middleMiocene units on either side of the La

Cruz fault provides a more robust estimate of dextral offset on the fault
(Fig. 11). Northeast of the fault in Arroyo Sauzal, we map a sequence of
latest(?) middle Miocene volcanic and sedimentary units that consists
of non-marine conglomerate (Tcg1) with interbeds of the ~12.2 Ma
tuff of San Felipe (Ttsf) and discontinuous, thin ash beds. This sequence
is exposed in an ~4.5-km-long, ENE-striking, south-dipping belt that is
gradually deflected in a clockwise sense to a more ESE-striking orienta-
tion proximal to the dextral La Cruz fault (Figs. 3 and 10E). Southwest of
the fault, we map a similar yet discontinuously exposed sequence in
a ~ 4-km-wide, gently NE-dipping belt (Figs. 3 and 10A). We interpret

Image of Fig. 11
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these 4–5-km-wide belts of Ttsf to be correlative exposures of an elon-
gate, NE–SW trending, fault-controlled paleovalley that accumulated
deposits of non-marine conglomerate and the tuff of San Felipe
(Fig. 11B). Direct evidence for a NE–SW-trending paleovalley margin
is observed only in one location northeast of the La Cruz fault (near
Sauzal Spring), where 60-m-thick Ttsf deposits abruptly pinch out to
the east over a distance of ~150 m (Fig. 3). Elsewhere, the margins of
this paleovalley are inferred but not exposed due to subsequent erosion
or burial by younger units (e.g. Tcg2, Tthm). Nonetheless, by using the
mapped extent of the Ttsf belts on each side of the La Cruz fault as
minimumwidths of this NE–SW-trending paleovalley (Fig. 11A), we re-
store these outcrop belts (Fig. 11B). From this, we estimate 5 ± 2 km of
dextral displacement across the La Cruz fault (Fig. 11).

Restoration of 5 ± 2 km of dextral motion along the La Cruz fault
also brings the Colorado fault and Sauzal fault into close alignment
(Fig. 11B), suggesting that these faults, which share similar dip-slip mag-
nitudes and timing histories,may have been a single, correlative structure
that was subsequently cut and offset by dextral slip on the La Cruz fault.
This fault correlation remains uncertain as it is complicated by subsequent
dip-slip motion on the La Cruz fault that exposes different structural
levels. Dextral shear across the La Cruz fault likely produced nearby clock-
wise vertical-axis block rotation (e.g. Bennett and Oskin, 2014) and may
have rotated the orientation of the Colorado and Sauzal normal faults in
a clockwise sense. The fault-controlled paleovalley of Ttsf likely connected
to a more widespread and continuous sheet of Ttsf deposits documented
by Oskin et al. (2001) and Oskin and Stock (2003b) in the Sierra Menor
and beneath Valle de Tecomate to the northwest and north, respectively
(Fig. 2). This paleovalley on southern Isla Tiburón likely continued to
the southwest, towards the Tiburón transform fault. We speculate that
Ttsf exposures documented on central Isla Ángel de la Guarda (Fig. 1;
Stock et al., 2008; Skinner et al., 2012b), may correlate to these Ttsf expo-
sures on southern Isla Tiburón, providing a potential tie-point that con-
strains ~90–120 km of dextral displacement across the Tiburón
transform fault since ~12.2 Ma.

We also correlate exposures of the ~12.2 Ma tuff of Ensenada de la
Cruz (Tlc) across the La Cruz fault (Fig. 3). Southwest of the fault,
outcrops of Tlc vary along strike from ~50-m-thick, densely-welded de-
posits in the southeast (Fig. 10D) to thin (b12 m) and discontinuous,
slightly- to non-welded deposits in the northwest (Fig. 10C). Northeast
of the La Cruz fault, Tlc deposits are very discontinuous and only
observed to be ~5–12 m thick in isolated paleovalley(?) exposures (e.g.
Fig. 10E). Thus, Tlc is a poor marker for directly estimating total dextral
displacement across the La Cruz fault. However, its limited original distri-
bution andmodern-day proximity on either side of the La Cruz fault sug-
gest a relatively small magnitude of post-12Ma dextral displacement and
lends support to our estimate of only 5±2 kmof dextral displacement of
the Ttsf paleovalley (Fig. 11).

6.2.3. Dextral offset of late Miocene units
Younger, lateMiocene (post-8Ma) units also correlate across the dex-

tral La Cruz fault, including the La Cruz basin deposits (Tcg2). Tcg2 de-
posits are faulted and folded and its basal contact is cut and offset by
the multiple strands of the La Cruz fault zone (Fig. 3). Highly deformed
marine strata of similar age (6.4–6.0 Ma) in the southwest Isla Tiburón
basin are dextrally offset no more than 1 km along the La Cruz fault
(Fig. 3; Bennett et al., 2015). Thus, themajority of the 5± 2 km of dextral
displacement along the La Cruz fault must have occurred between ~8Ma
and ~6 Ma.

7. Regional implications

7.1. Regionally synchronous onset of transform faulting in the Gulf of
California

Dextral slip on the La Cruz fault initiated during late Miocene time
(~8–7 Ma, reported above). This timing is compatible and synchronous
with the onset of transform faulting and more focused and oblique
transtensional deformation along a significant length of the Pacific-
North America plate boundary in northwest Mexico and southern
California (Fig. 12). Direct evidence for focused transtension in the
form of mapped strike-slip faults, clockwise vertical-axis block rotation,
and/or fault exhumation is restricted to onshore exposures adjacent to
the northern Gulf of California. Indirect evidence comes from onshore
and offshore pull-apart basins kinematically linked to significant dextral
strike-slip faults.

7.1.1. Evidence from the Sonora rift margin
On the eastern, Sonora rift margin, the majority of strike-slip

faulting, clockwise block rotation, block tilting, and transtensional
basin subsidence initiated ca. 8–7 Ma in the Coastal Sonora fault zone
(Fig. 12; Bennett et al., 2013; Bennett, 2013; Darin et al., 2016). These
findings are consistentwith latestMiocene to Pliocene (7–4Ma) apatite
fission track ages documented throughout coastal Sonora, which are
interpreted as a minimum age for the onset of exhumation related to
transtensional shearing (Lugo-Zazueta et al., 2010). Farther to the
southeast, along structural strike, Herman (2013) documented a zone
of significant late Miocene dextral deformation and clockwise vertical-
axis block rotation in the Sierra El Aguaje, west of Guaymas (Fig. 12),
that may be related to either the Coastal Sonora fault zone or proximity
to the southeastern continuation of the La Cruz fault and Tiburón
transform.

7.1.2. Evidence from the Baja California rift margin
On the western, Baja California rift margin, direct geologic evidence

suggests that the majority of transtensional deformation also com-
menced in latest Miocene time ca. 8–7 Ma (Fig. 12). In the Salton
Trough, subsidence in the hanging wall of theWest Salton Detachment
fault, which was linked to dextral motion on the southern San Andreas
Fault system, began at 8.0±0.4Ma (Dorsey et al., 2007, 2011). In north-
eastern Baja California, on the conjugate rift margin to Isla Tiburón and
coastal Sonora, Lewis and Stock (1998a,b) and Seiler et al. (2010) docu-
mented a series of syn-tectonic basins (e.g. Santa Rosa basin) related to
regional dextral shear, which was accommodated via clockwise
vertical-axis block rotation, sinistral slip onNE-striking strike-slip faults,
and east- to southeast-directed extension above detachment faults.
Basins that formed adjacent to and above these faults contain growth
strata with basal depositional ages of 7–6 Ma (Boehm, 1984; Seiler
et al., 2010). Low-temperature thermochronologic analysis of normal
faults that controlled basin formation indicates that exhumation related
to oblique rifting in northeastern Baja California initiated between
9–7 Ma (Fig. 12; Seiler et al., 2011). Farther south, rift-related marine
deposition in the Santa Rosalia basin initiated ca. 7 Ma (Fig. 12 inset;
Holt et al., 2000). Farther south, the onset of crustal extension and
fault exhumation related to dextral-oblique normal faulting and forma-
tion of the Loreto basin is similarly bracketed between ~8–6Ma (Fig. 12
inset; Mark et al., 2014). This timing is similar to the ~9–8 Ma onset of
fault exhumation documented on the western rift margin in southeast-
ern Baja California, near the tip of the peninsula (Fig. 12 inset; Kohn
et al., 2010).

7.1.3. Evidence from concealed pull-apart basins
Indirect evidence for the onset of transform faulting comes from

geological and geophysical examination of concealed pull-apart basins
kinematically linked to significant dextral strike-slip faults along
a N 1000 km-long length of the Gulf of California (Fig. 12). In the Altar
desert of northwesternmost Sonora (Fig. 12), Pacheco et al. (2006) doc-
ument the onset of syn-tectonic sediment accumulation in the Altar
pull-apart basin ca. 7–6 Ma. This basin formed above the hanging wall
of the Altar detachment fault, coeval with top-to-the-northwest exten-
sion that was kinematically linked to dextral strike-slip motion on the
NW-striking Altar fault, a southeastward continuation of the southern
San Andreas Fault system.
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segment.
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Approximately 350 km to the southeast of Isla Tiburón, offshore
Sinaloa and along strike with the Ballenas transform fault, Miller and
Lizarralde (2013) correlate marine evaporite deposits that floor the
east Guaymas transtensional marine basin with ca. 7 Ma deposits in
the Santa Rosalia basin on the conjugate (Baja California) rift margin,
and interpret that this marine basin formed during oblique opening of
the Guaymas rift segment (Fig. 12 inset). In the southernmost Gulf of
California, across the Alarcon rift segment (Fig. 12 inset), Sutherland
et al. (2012) document a phase of oblique extension ca. 8–5 Ma, sup-
ported by the presence of syn-rift deposits that overlie volcanic rocks
as young as 11–9 Ma and are located adjacent to related strike-slip
faults. Sutherland et al. (2012) also suggest an earlier phase of
transtension ca. 14–11 Ma, though direct evidence for its association
with dextral strike-slip faulting is lacking from their geophysical data.
Alternatively, formation of these middle Miocene basins could be due
to east-west extension documented in adjacent western Sinaloa (e.g.
Ferrari et al., 2013), and similar to that accommodated by the Sauzal
and Colorado normal faults on Isla Tiburón.

In summary, there is widespread evidence of a tectonic reorgani-
zation in the Gulf of California rift in the late Miocene between 8 and
6 Ma that led to a more intensive, localized, and oblique rift, charac-
terized by significant block tilting, clockwise block rotation, and tec-
tonic subsidence (Fig. 12). This transition led to the development of
the Gulf of California shear zone, a 50–100 km-wide transtensional
belt of long transform faults, linked pull-apart basins, and clockwise
vertical-axis block rotations (Bennett and Oskin, 2014). The Gulf of
California shear zone accrued several tens of km of dextral displace-
ment in a few million years (e.g. Bennett et al., 2013; Vidal-Solano
et al., 2013), a strain rate comparable to that of the plate boundary
that eventually developed here. If earlier proto-Gulf deformation
was transtensional in character (c.f. Gans, 1997; Fletcher et al.,
2007), it was probably more diffuse and akin to the Basin and

Image of Fig. 12
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Range extension that preceded it than the nascent plate-boundary
dextral shear zone that followed.

7.2. Consequences of increased obliquity of PAC-NAM relative plate motion

Although a global plate circuit model indicates that rapid (~5 cm/yr)
PAC-NAM dextral-oblique motion was underway by ~12.3 Ma at the
latitude of Baja California (Atwater and Stock, 1998), development of
significant, embedded dextral transform faults within the rift (Gulf of
California shear zone) was delayed by 4–5 Myr. This delay suggests
that the degree of plate motion obliquity during earliest oblique rifting
was insufficient to promote the development of transform faults and lo-
calize the dextral shear component of PAC-NAM relative motion.

Based on the regional synchronicity of concentrated oblique
deformation, now preserved within the margins of the northern Gulf
of California, it appears that rift localization was facilitated by the
development of long transform faults during latest Miocene time
(ca. 8–6 Ma), ~1–2 Myr prior to rift localization at ca. 6 Ma. This timing
is conspicuously similar to the onset of a significant azimuthal change in
PAC-NAM relative plate motion predicted by the global plate circuit
model (Atwater and Stock, 1998; Atwater and Stock, 2013). During
chron 4 (a magneto-chron time interval from 8.8–7.5 Ma; see Lourens
et al., 2004), the PAC-NAM relative plate motion vector began to rotate
clockwise at the latitude of the Gulf of California. At the latitude of Isla
Tiburón, the PAC-NAM relative plate motion direction was ~300° from
~11–8 Ma (Atwater and Stock, 2013). Between ~8 Ma and ~6 Ma, rela-
tive plate motion rotated ~12° to an azimuth of ~312°. By ~3 Ma, rela-
tive plate motion had rotated a total of ~17° since ~8 Ma, and was
oriented at azimuth ~317°. This progressive rotation of relative plate
motion increased the obliquity of rifting by reducing the angle between
the relative plate motion and the regional trend of the plate boundary,
drawn from the Salton Sea to the Rivera triple junction at the mouth
of the Gulf of California.

We speculate that the azimuth of the La Cruz fault (302°) preserves
an earlier (ca. 8 Ma) signature of relative plate motion, which was ori-
ented ~300–312° azimuth. Significant dextral motion on strike-slip
faults in the Coastal Sonora fault zone, near Bahía Kino and across north-
eastern Isla Tiburón, initiated ~8–7 Ma and are oriented similar
(~302–308°) to the La Cruz fault (Bennett et al., 2013; Bennett, 2013).
In contrast, transform faults at the latitude of Isla Tiburón that devel-
oped later (post-6 Ma) and serve as the primary plate boundary today
(e.g. Ballenas transform) are oriented ~315°, more northerly (clock-
wise) than the orientation of the La Cruz fault and Coastal Sonora fault
zone (Fig. 1). Thus, it appears that subtle differences in the orientation
of transform and strike-slip faults reflects the evolving orientation of
PAC-NAM relative plate motion, where the orientation of structures
maymimic the relative platemotion directionduring fault development
and activity.

Analog clay and sand-silicone models of oblique rifts illustrate the
diverse structural styles that develop fromvariable angles of rift obliqui-
ty (Withjack and Jamison, 1986; Bonini et al., 1997; Clifton et al., 2000;
Clifton and Schlische, 2001; Corti et al., 2001). Importantly, only highly
oblique rifts, with ≤30° between relative plate motion and the plate
boundary, develop significant strike-slip faults in these models
(Clifton et al., 2000). For a reference point that tracks PAC-NAM relative
motion at the latitude of Isla Tiburón, the clockwise shift that occurred
ca. 8–6 Ma altered the angle of rift obliquity from ~30° to ~18°. Thus,
the Gulf of California appears to have crossed a critical plate-kinematic
threshold during latest Miocene time, when an increase in rift obliquity
spurred the synchronous development ofmajor dextral transform faults
alongmuch of the rift, resulting in a focused zone of oblique divergence
(theGulf of California shear zone; Fig. 12) alongwhich rifting eventually
proceeded to plate boundary localization ca. 6 Ma.

If the Gulf of California shear zonewas only active for ~2 Myr before
the plate boundary localized west of Isla Tiburón (Oskin et al., 2001),
then no more than ~100 km of PAC-NAM dextral shear could have
accrued in this zone east of Isla Tiburón during proto-Gulf time. This
is consistentwith our estimates of total dextral shear across Isla Tiburón
and with estimates in coastal Sonora (Bennett et al., 2013; Vidal-Solano
et al., 2013) and northeastern Baja California (Lewis and Stock, 1998a),
but conflicts with tectonic models that invoke much larger magnitudes
(150–250 km) of proto-Gulf dextral deformation here (e.g. Nicholson
et al., 1994; Gans, 1997; Wilson et al., 2005; Fletcher et al., 2007;
Seiler et al., 2010). Older, distributed transtension across the western
Mexican Basin and Range (Fig. 1 inset) likely contributed additional
dextral slip to the full plate-boundary budget (e.g. Gans, 1997), but no
significant pre-9 Ma strike-slip faults have been documented that com-
parewith theproto-Gulf transform faults inwesternmost Sonora and on
Isla Tiburón.

Following the late Miocene development of the Gulf of California
shear zone, the Gulf of California progressed to a localized rift, became
host to a marine seaway, and proceeded quickly to continental rupture.
Intense oblique-divergent motion throughout latest Miocene time
caused lithospheric thinning and subsidence that formed incipient
pull-apart basins at or below sea level. Sufficient crustal thinning and
subsidence within the Gulf of California shear zone allowed the region-
ally synchronous marine flooding of the northern Gulf of California ca.
6.5–6.3 Ma (Oskin and Stock, 2003a; Bennett et al., 2015). Rift localiza-
tion occurred within the core of this Gulf of California shear zone, but
was delayed until ~6 Ma (Oskin et al., 2001; Oskin and Stock, 2003b),
at least 1–2 Myr after the onset of transform faulting. Eventually,
within the northern Gulf of California, extreme crustal thinning
across pull-apart basin detachment faults (Gastil and Fenby, 1991;
González-Fernández et al., 2005) facilitated Pliocene–Pleistocene conti-
nental rupture along its western edge (Martín-Barajas et al., 2013).

7.3. A modern analog: The Walker lane

The lateMioceneGulf of California shear zone probably bore similar-
ities to the modern-day Walker Lane belt of the western Basin and
Range Province of California and Nevada (Faulds et al., 2005; Henry
and Faulds, 2006). In both areas, the shear zone developed along the
axis of a former, subduction-related volcanic arc (Hausback, 1984;
Umhoefer et al., 2001; Busby et al., 2012). In the Gulf of California
shear zone, this zone of thermally weakened and gravitationally unsta-
ble lithospherewas oriented slightly oblique (more northerly) to the az-
imuth of Pacific-North America relative plate motion, similar to the
geometry of the modern-day Walker Lane (Unruh et al., 2003). The
en-echelon patterns of oblique deformation that developed in the Gulf
of California resemble model predictions of oblique extension across
pre-existing weak zones (van Wijk, 2005; Brune et al., 2012).

7.4. The role of rift obliquity in rupturing continents

In northwesternMexico, protracted Oligocene–Miocene continental
extension and volcanism migrated westward (Ferrari et al., 2013), cul-
minating with a late Miocene increase in rift obliquity and Miocene–
Pliocene lithospheric rupture. This history led to the strongly asymmet-
ric rifted margins that flank the northern Gulf of California today
(Aragón-Arreola and Martín-Barajas, 2006). The Baja California margin
is relatively narrow (b50 km-wide), while the Sonora margin encom-
passes a ~300 km-wide extensional province (Fig. 1 inset; Stock and
Hodges, 1989). This asymmetric geometry resembles other, more ma-
ture, rifted continental margins (Louden and Chian, 1999) and model
predictions of continental break-up (Bassi, 1995; Huismans and
Beaumont, 2003). However, in the case of the Gulf of California, riftmar-
gin asymmetry was strongly influenced by the evolving rift obliquity.

Continental rupture and formation of new oceanic rift basins
requires focused strain (Buck, 1991). Due to its infancy, the Gulf of
California preserves a rare onshore record of early continental break-
up processes, and serves as an example of how rift obliquity and forma-
tion of transform faults helps facilitate continental rupture. Intrinsically,
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oblique rifts develop en-echelon patterns of transform faults and con-
nected pull-apart basins (Withjack and Jamison, 1986; van Wijk,
2005). Sub-vertical strike-slip faults are relatively unaffected by buoy-
ancy and flexural forces (e.g. Forsyth, 1992) that otherwise restrict
fault-slip on non-vertical, normal faults; restrictions that can drive rift
widening during orthogonal rifting (Buck, 1991). Thus, strike-slip faults
tend to be susceptible to fault weakening and shear heating (Leloup
et al., 1999), processes that allow shear zones to be longer-lived (Kaus
and Podladchikov, 2006) and accumulate larger displacements. Further-
more, normal faults typically experience horizontal-axis rotation and
evolve to more shallow dips with continued slip, placing them in non-
optimal orientations for accumulation of large displacement (c.f. Brady
et al., 2000). Sub-vertical strike-slip faults, on the other hand, can toler-
ate such fault-plane rotation across releasing or restricting bends. Addi-
tionally, unlike strike-slip faults, the length of any single normal fault
found in a traditional, orthogonal rift setting may be limited in its
growth by the thickness of the brittle crust (Jackson and White, 1989).

Highly oblique rift geometries, where the strike-slip faults that bound
rift segments (transform faults) are kinematically linked to adjacent pull-
apart basins, may favor the formation of large-offset, translithospheric
detachment faults (e.g. Tucholke et al., 1998) and are likely more effi-
cient at localizing the strain necessary for continental rupture than or-
thogonal rifting (Bennett, 2011; Brune et al., 2012). Several structural
and geophysical studies throughout the Gulf of California and Salton
Trough demonstrate the abundance of large-offset normal faults kine-
matically linked to zones of transform faults with high transtensional
strain rates (e.g. Axen and Fletcher, 1998; González-Fernández et al.,
2005; Pacheco et al., 2006; Seiler et al., 2010; Dorsey et al., 2011;
Bennett et al., 2013; Martín-Barajas et al., 2013), consistent with the no-
tion that an oblique, en-echelon rift architecture enhances the ability to
rupture continental lithosphere and form a new oceanic rift basin.

8. Summary and conclusions

The Gulf of California preserves a rare, youthful onshore record of
oblique continental break-up processes, where transform faults kine-
matically linked to adjacent pull-apart basins appear to have efficiently
localized the strain necessary for continental rupture, consistent with
numerical modeling studies of oblique rifting (e.g. Brune et al., 2012).
Rift-related structures and syn-tectonic basins on Isla Tiburón, a proxi-
mal onshore exposure of the rifted North America margin in the Gulf
of California, preserve a two-phase record of fault activity and basin for-
mation. Phase 1: On southern Isla Tiburón, an early phase of extension
across the Sauzal and Colorado normal faults initiated sometime after
~19–17 Ma and was ongoing by ~12.2 Ma, similar to Basin and Range
extension documented in western Sonora and Sinaloa during this time
(e.g. Ferrari et al., 2013). Phase 2: Strike-slip faulting commenced
~8–7 Ma, after the earlier phase of normal faulting had commenced.
Phase 1 normal faults and related basin deposits were subsequently
buried by younger, syn-tectonic sediments of the non-marine La Cruz
basin, likely rotated clockwise by subsequent dextral shear, and crosscut
by the northwest-striking La Cruz strike-slip fault, which was active
until ~4 Ma. Reconstruction of the distribution of volcanic units permits
an estimate of 5 ± 2 km for total dextral slip across the La Cruz fault
since ~12.2 Ma (Fig. 11). The La Cruz fault was a significant NW-
striking strike-slip structure that developed during latest Miocene
time and, alongwith the Tiburón transform, bounded the southwestern
margin of the Upper Delfín–Upper Tiburón rift segment (Fig. 1). These
structures were subsequently lengthened offshore, to the northwest,
where they were kinematically linked to large-offset detachment
faults and acted as plate boundary transform faults during earliest
(latest Miocene–Pliocene) oblique opening and pull-apart basin forma-
tion in the northern Gulf of California (Oskin and Stock, 2003b;
Martín-Barajas et al., 2013).

Latest Miocene strike-slip faulting and related basin formation on
Isla Tiburón is synchronous with tectono-stratigraphic records of
oblique rifting and pull-apart basin formation from both conjugate
rifted margins in the northern Gulf of California and along a significant
length of the Pacific-North America plate boundary in northwest
Mexico and southern California (Fig. 12). At several locations along
the N1000-km-long reconstructed plate boundary, evidence for the
onset of shear-dominated transtension is concentrated, in both time
and space, along the narrow, NNW-trending Gulf of California shear
zone, where earliest transform faulting initiated in the latter part of
proto-Gulf time, ca. 8–6 Ma (Fig. 12). The timing of the development
of the Gulf of California shear zone broadly corresponds with the estab-
lishment of the eastern California shear zone (Dokka and Travis, 1990)
and the early Walker Lane system (Faulds et al., 2005). These
transtensional systems may have been linked as a once-continuous
belt of late Miocene dextral transtension related to the PAC-NAM plate
boundary. In northwesternMéxico, earlier (~12–8Ma) deformation re-
lated to oblique PAC-NAM relative plate motion was transtensional in
character (c.f. Gans, 1997; Fletcher et al., 2007), but probably character-
ized by extension-dominated transtension and more diffuse in nature
(e.g. Darin et al., 2016).

Collectively, these findings do not support a regional model that in-
vokes orthogonal rifting with little to no strike-slip faulting prior to
~6 Ma for regions east of the Baja California microplate (e.g. Stock and
Hodges, 1989). These findings also do not support a regional model
that appeals to a single phase of significant and integrated transtensional
shear that initiated ca. 12.3 Ma (Fletcher et al., 2007). Rather, our results
from southern Isla Tiburón, together with published regional observa-
tions, support that significant dextral transtension did not become orga-
nized until ca. 8 Ma, providing support for a progressive localization
model (cf. Bennett, 2009; Seiler, 2009; Seiler et al., 2011; Bennett et al.,
2013; Bennett and Oskin, 2014; Darin et al., 2016), which envisions
that transtensional plate boundary deformation gradually localized in
latest Miocene time in response to changes in the obliquity of relative
plate motion.

The timing of the tectono-stratigraphic transition to strike-slip
faulting and basin formation corresponds to a clockwise azimuthal
shift in Pacific-North America relative motion ca. 8.8–7.5 Ma, which
reorganized plate motions (Atwater and Stock, 1998, 2013) and ampli-
fied the effects of rift obliquitywithin the Gulf of California. Consequent-
ly, the Gulf of California rift crossed a critical plate-kinematic threshold
that prompted the synchronous development of major dextral trans-
form faults, linked pull-apart basins, and clockwise vertical-axis block
rotations, forming a focused zone of oblique divergence. Shortly follow-
ing (1–2Myr) the development of this Gulf of California shear zone, the
northern Gulf of California became host to a marine seaway ca.
6.5–6.0 Ma (Oskin and Stock, 2003a; Bennett et al., 2015) co-located
with localization of the incipient plate boundary (Oskin et al., 2001;
Oskin and Stock, 2003b). Thus, although rapid (~5 cm/yr) PAC-NAM
dextral-oblique motion commenced ~12.3 Ma at the latitude of Baja
California (Atwater and Stock, 1998), localization of the plate boundary
wasdelayed for severalmillion years. Strain localization and subsequent
continental rupture in the Gulf of California was likely facilitated by a
transition to highly oblique and localized rifting and the development
of major transform faults. The record from the proto-Gulf of California
illustrates howhighly oblique rift geometries enhance the ability of con-
tinental lithosphere to rupture and, ultimately, lead to the formation of
new oceanic rift basins.
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